Skip to main content
English    |    Français

2017 Global Engineering Deans Conference

We were fortunate to attend the Global Engineering Deans Conference in Niagara Falls earlier this month.

It was a great opportunity to hear about important topics in engineering education, research and outreach.

SPARKvue includes an easy & effective tool for hosting distance & hybrid labs!

Alternate text

With Shared Sessions, students can easily join a SPARKvue session hosted by their teacher – or even another student – from anywhere! They observe data collection in real time and keep a copy of the data to perform their own analysis.

Setting up a session is quick and easy and allows students to participate in a home lab using just their smartphone. Once the session is finished and students have completed their analysis, they can digitally submit their work using cloud services or the Journal Snapshot tool.

Mole Day

It’s that time of year again. Chemistry teachers everywhere are dusting of their pun-ny jokes and creating mole-themed, activities and treats to celebrate National Mole Day in commemoration of Avogadro’s number (6.02 x 1023). Mole Day is celebrated starting at 6:02 am on October 23rd. How will we be celebrating? With chips and Guaca-mole, of course!

As we introduce the topic to students we typically start with something they already know. A mole, like a dozen, is a way of counting things. It just so happens that a mole is a really large number. While 1 dozen equals 12, 1 mole equals 6.02 x 1023. This number has to be very large because the particles that we deal with in chemistry happen to be very, very small (or sm-ole… the bad jokes keep on coming).

To give students a mole-ecular perspective of those tiny particles, you can use a modeling kit.

At this point in the year it is important for students to understand the basics of chemical formulas. The model kit gives them something to see and touch as they learn that subscripts in a formula represent the number of atoms that are bonded in the compound.

In addition to formulas, the model kit can be useful in calculating molar mass. Since each different colored atom represents a different molar mass, students can just take their model and add up all the masses of all the atoms that they see! In the case of water, the oxygen is 16 grams per mole and each hydrogen is 1 gram per mole. In total, there are 18 grams for every one mole of water molecules.

So how do chemists relate these tiny particles to something that they can measure, like grams? Moles to the rescue! Avogadro’s number (the number of particles in one mole) and molar mass (the amount of grams in one mole) both meet in the middle at … moles.

Moles are central to counting particles in chemistry. Using Avogadro’s number and the molar mass of water, we know that there are 6.02 x 1023 molecules in graduated cylinder that contains 18 grams of water.

Model kits can be great tools in helping students visually and kinesthetically learn about chemical formulas. They become actively engaged in the learning process as they discover the meaning and value of subscripts, molar masses and, of course, Avogadro’s number. And as students gain a better understanding of these concepts the real fun begins— they start to really understand your science humor! “Oh no! I’ve spilled water on my book!”

Happy Mole Day!

AYVA showcases our Robotics and Automation offerings from KUKA

We were pleased to host Alex Shum, the Chair of Mechanical Engineering at NAIT in Edmonton and to introduce the latest Educational Robotics Bundle from KUKA. We visited KUKA Canada’s new office in Mississauga where we spent time in their training center and reviewing the new ready-to-go curriculum tied directly to the manipulatives included in the Robotics Cell. Once instructors complete the Programming Courses at KUKA College they are able to then provide their students with the official KUKA Certification upon completion of their course. In the afternoon we headed to the University of Toronto to visit their state-of-the-art Robotics Lab which includes 6 Robot Cells!

Pictured above, are Alex Shum, Chair of Mechanical Engineering at NAIT, with Dianne Beveridge and Fazal Mulla from our AYVA Team.

Experiment: How Hard is Your Tap Water?

Students use conductometric titration and gravimetry to determine how much calcium carbonate is in a sample of tap water.

This lab is an introduction to methodological comparisons. Percent error is calculated for both gravimetry and titration. Samples of tap water from various locales are concentrated and analyzed for calcium content.

Student Files

  • 03_ACI_How_Hard_Is_Your_Tap_Water_S.docx
  • 03_ACI_How_Hard_Is_Your_Tap_Water_S.pdf

Standards Correlations

Featured Equipment

  • Wireless Drop Counter
    • Use the new Wireless Drop Counter for more efficient and accurate titration data. Conducting a titration has never been easier!
  • Wireless Conductivity Sensor
    • This waterproof sensor connects via Bluetooth® to measure both conductivity (ionic content in solution) and total dissolved solids.

This experiment can also be run with previous versions of PASCO sensors.

Seven Great Experiments Using the Wireless CO2 Sensor

Measuring Carbon Dioxide (CO2) has many applications in the classroom and with the latest advances in technology is easier and more affordable than ever before. Here’s a quick look at some of the cool things you can do with the new Wireless CO2 Sensor!

1. Monitor Air Quality

An engaging way to introduce students to the sensor is to use the “closed” environment that you already have access to – your classroom or lab. This is also a great opportunity to use the data logging capabilities of the sensor. Find a central place in the room to place the sensor, ideally suspended above students heads where they can’t exhale onto the sensor. Place the sensor into logging mode, and collect 8-10hrs of data (Figure 1a). Depending on the student density in your room, HVAC, how closed the environment is, you should be able to see fluctuations in the CO2 levels that correspond to the class schedule because all of those students are busy breaking down glucose and producing CO2.


Figure 1a. Data from sensor logging over a school day.

 

Students can repeat this test in other locations such as the cafeteria, greenhouse, bathrooms, etc. While there are conflicting standards generally a CO2 concentration of <1,000ppm is desirable and >3,500ppm people will begin to experience physiological effects. Many modern HVAC systems even have their own sensors that will cycle the air to maintain CO2 levels <1,500ppm you can probably tell from the data if you your school or lab has one!


Figure 1b. Data with bell schedule overlaid

 

2. Investigate Cellular Respiration

With the included sample bottle students’ can use invertebrates, germinating seeds, or other small organisms to quickly collect respiration data. Variation in environmental factors like light or temperature provide easy extensions as well as germination time, species comparisons, body mass, activity level, etc.


Figure 2. Respiration of Germinating Seeds

 

Extending this setup the sensor can be used with bacterial or yeast solutions, even aquatic species by measuring the gas concentration in the headspace of the container.


Figure 3. Headspace Measurement above a liquid

 

While a smaller chamber will yield faster results (gas concentration will change faster) sometimes a bigger chamber is needed to study larger organisms or when modeling ecosystems. This is where the wireless design is particularly helpful, the sensor can easily be placed inside any container along with the organism being studied – without any modifications. If you need to run the sensor for longer than about 18hrs, connect it to an external USB power pack or source and the sensor can continue working.


Figure 4. Sensor inside a larger food storage container

 

3. Investigate Photosynthesis

To get great photosynthesis data you just need a fresh dark green leaf, the sensor, and the sample bottle. Put the leaf in the bottle, cap it with the sensor and start data collection! Using the sample bottle and a fresh leaf ensures a quick response – data runs of 5-10min! Light vs. Dark and wavelength are simple and relevant manipulations for students to conduct.


Figure 5. Photosynthesis using a single Epipremnum sp. Leaf with no filter, blue filter, red, and green applied. Plants exposed to full spectrum CFL bulb for 10min runs.

 

Test

CO2 Rate (ppm/min)

Light (no filter)

-17

Blue Filter

-7

Red Filter

-9

Green Filter

-12

Dark (tinfoil wrapped)

+32

Table 1. Summary of change in rate found from each run of data.

 

And more ideas (than I have time to test): Light intensity, impact of temperature, herbivory, time of day, herbicide impact, stomata density, C3/C4/CAM Plant comparison, CO2 Concentration

4. Measure Carbon Flux in the Field

In some cases lab experiments aren’t feasible or desirable. It’s easy to take the sensor into the field using a cut bottle, bell jar, or plastic bag to isolate a plant or patch of soil for analysis without disturbing the environment. Firmly press the container into the substrate to create a tight seal and begin collecting data. Students can easily compare different ecosystems to determine if they are a net carbon producer or consumer under conditions. This technique can be repeated in different conditions, times of the day or year to compare results.


Figure 6. Cut bottle with sensor place over patch of turf

 

This same technique combined with the concept of measuring a headspace over a liquid to determine the gas exchange can be used to monitor carbon flux in an aquatic ecosystem. Securing the sensor with a float (or to a fix object) to protect it creates the airspace needed to measure above the water. Collect data for the day to see how a body of water is exchanging carbon with the atmosphere.


Figure 7. Using a float and cut bottle to create an airspace and measure carbon exchange

 

5. Monitor Respiration of Soil Microbes and Decomposers

To streamline the sample collection and measurement of soil samples students can use a section of PVC to collect a consistent volume of substrate and make the measurement in the same chamber. A 6-8in (15-20cm) section of pipe with an inner diameter of ~1.125” (3cm) can be easily pounded into the ground a specified depth to collect the sample. Seal the end of the pipe with some parafilm or plastic wrap and collect the data.


Figure 8. Sensor in PVC tube with marking for soil sample depth, clear PVC used to demonstrate

 

Data collection can take place in the field or lab and is easily extended for inquiry. Students can treat the samples with pH buffers, water, drying, salt, pesticides, or other chemicals of interest to determine the impact on microbe respiration.

6. Measure Human Respiration

Using a drinking straw and a 1gal (4L) ziplock® bag its easy to capture human respiration data. Here’s a video comparing breath hold time. This same procedure can be used to test other variables, before and after exercise, time of day, etc.

 

7. Dissolved CO2 in situ

With Dissolved CO2 Sleeve students can monitor CO2 in an aquatic environment. The Teflon® material is permeable to CO2 molecules but not to water, creating a much smaller headspace around the sensor with a better response time. While the CO2 is not dissolved when its measured this approach has been validated and tracks with other indicators such as pH (Johnson et al 2010). This approach works well in the field and in the lab for photosynthesis and respiration experiments. Below is a picture and some data we collected during betta testing!

Reference:
Johnson, M. S., Billett, M. F., Dinsmore, K. J., Wallin, M. , Dyson, K. E. and Jassal, R. S. (2010), Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems – method and applications. Ecohydrol., 3: 68-78. doi:10.1002/eco.95

Related Products:

Exploring 2-Dimentional Motion and Vectors with Capstone’s Video Analysis Feature

Capstone includes a very powerful video analysis feature which can be used for comprehensive analysis of moving objects as well as to improve understanding.  Short video clips from your smartphone can be easily imported and analysed with a range of tools.  The movement of objects with a high contrast to a uniform background can be automatically tracked by the software.


A ball will be thrown in a parabolic arc and various tools will be used to analyze the motion.  Note that the vertical and horizontal axes have been marked and a distance of 4.00 m has been measured.  This will enable the software to translate from pixels to m:

 

As part of the analysis, the position of the ball in each frame is marked and the result is as shown below:

It is now possible to have the software generate various graphs such as position vs time and velocity vs time.

A graph of vertical position vs time is as shown below:

A graph of horizontal position vs time yields the following:

A graph of the vertical component of velocity vs time yields the following result:

Capstone also includes tools that improve understanding.  For example, in the screen below, the vertical and horizontal components of velocity are shown for the ball as it flies through the air.

To make the display less cluttered and less confusing it is possible to mark the vectors at an interval other than every frame.  Below the vectors are shown every third frame:

It is also possible to have a single vertical vector and a single horizontal vector appear and move with the ball as it goes through the air.

 

It is also possible to show the acceleration vector as shown below:

The fact that a few vectors do not point directly down is likely due to minor errors made when marking the position of the ball in various frames with a mouse.

2020 Skills Sheridan Competition

Sheridan College (Davis Campus) conducted their 3rd annual Skills Competition on March 4th, 2020, a day dedicated to recognize and celebrate the accomplishments of the students from various programs within the Faculty of Applied Science and Technology. Previously, professors selected their top students to compete in the Skills Ontario competition but with Sheridan’s new Skills Trade Centre, a more engaging way to select the students was brought forward.

Participants choose one stream and put their skill and knowledge to the test while engaging in a friendly competition with their peers. Some of the various streams included electrical engineering, information technology, precision machining, computer engineering, media management, web design, and welding.

 

AYVA was proud to be a sponsor for this years’ event. It was an honour to be able to witness the extraordinary projects presented by the students.

At the end the competitions, students and sponsors were gathered together for the presentation of the awards.

First, second and third place medals (which are made by the skills trade facility!) are awarded to the students.

Congratulations to all the winners and participants in this year’s competition!

PASCO Day of Physics – July 24, 2020

Session 1

Session 2

Session 3

Session 4

Session 5: Cool Physics Demos

  • Coupled Oscillators Smart Cart (FFT) & Friction Block+PAScar
  • Inertia Wands
  • Atmospheric pressure Demos
  • Polarizer Demo / Color Mixer / Color Mixer Accessory
  • Genecon Hand Crank Generator Coil & cow magnet on a spring
  • Eddy Currents – magnetic braking
  • Mirror pendulum demo
Save & Share Cart
Your Shopping Cart will be saved and you'll be given a link. You, or anyone with the link, can use it to retrieve your Cart at any time.
Back Save & Share Cart
Your Shopping Cart will be saved with Product pictures and information, and Cart Totals. Then send it to yourself, or a friend, with a link to retrieve it at any time.
Your cart email sent successfully :)