CONTACT AYVA           SCIENCE  |  ENGINEERING         ENGLISH | FRANCAIS

Transpiration with a Potometer

Transpiration is an important concept in both biology and environmental science, especially in terms of role it plays in the water cycle. As water evaporates from the stoma of leaves water is pulled up (due to hydrogen bonding) through the xylem from the roots which have drawn the water from the surrounding soil.

Because transpiration is essentially an invisible process, a potometer is used to measure the rate of water lost to the air.  The advantages that sensor technology makes in many investigations in biology and environmental science are that it allows students to see the data in real time while great improving the accuracy and significantly decreasing the time needed to capture data.

Setting up a classic potometer with a Wireless Pressure Sensor is one example of how integrating sensors can improve the data collection process. With the included Leur connectors and tubing, all you need is a plant sample and optional stand with clamps to complete the lab. Students can choose from any plants available, but there are three general guidelines which help ensure success. Students should choose a plant with

  • a woody stem/branch that will fit snugly into the tubing, making it less prone to crushing and easier to setup.
  • relatively soft cuticle leaves because they generally have higher rates of transpiration and good stomatal density.
  • high leaf surface area (either large leaves or lots of leaflets) per stem/branch.

Insert the plant stem into the tubing as shown, making sure there are no bubbles in the tubing and that you have a few centimeters of air between the sensor and water. This can take a few tries to get right, and having a sink or tub to submerse the tubing in will help. The cohesion and adhesion of the water along with a slight positive pressure created when connecting the sensor will keep water out of the sensor even if a stand is not available.

Potometer 1

Figure 1. Potometer Setup with Wireless Pressure Sensor

Data collection usually takes 5-10 minutes depending on the plant. For the control run (taken at room temp with ambient light) wait for a change of at least 5.0 kPa before stopping data collection. After the control run is complete, find the rate of transpiration in kPa/min using the curve fit tool and save this into a data table. Save the plants from each trial so the surface area can be calculated and the trial data normalized for comparison.

Potometer 2

Figure 2. Sample data from control run at room temperature with ambient lighting

Calculating surface area (SA) can be done using the tried and true method with graph paper, but if you have cameras and computers available students can also use ImageJ— a free image analysis tool from the National Institute of Health. This is a powerful software and the basics are pretty easy to master. The steps for conducing area and size calculations in ImageJ can be found in this blog article or on this video. Although not part of the PASCO software suite, this is another tool that eliminates some repetitive work from the procedure and let students really focus on the data and analysis that support learning.

Potometer 3

Figure 3. ImageJ program analyzing leaf SA from control trial. 

When the SA is determined, add it to the data table in SPARKvue. A simple calculation provides the adjusted rate in kPa/Min/cm2. In subsequent trials students can investigate the impact of environmental variables such as light intensity, humidity, temperature, and wind— or they can compare different species of plants.

Potometer 4

Figure 4. Data analysis table with control and windy trial data

You can download the sample data with the table formatted and calculations created. After students go through the procedure once they can easily iterate this setup to conduct their own inquiry— where the true learning transpires!

Related Products:

Wireless Pressure Experiment


Sign Up For Our Newsletter - Get Info About New Products & Teaching Ideas

Sign Up For Our Newsletter

  • A big thanks for all the help and support you provided – I want to take some time to say a big thanks for all the help and support you provided me to select the best equipment in order to make the best possible use of the funds available. It is really exceptional that you happily connected with me multiple times even during the weekend and was always motivated to help. Please accept my big thanks for this.

    Gurpreet Sidhu | Physics Instructor | University College of North | The Pas, MB

  • Wireless Spectrometer Big Hit With Students – PASCO’s wireless spectrometer has been utilized very well by our earth science and physical science teachers. It’s an excellent piece of equipment and we have very much enjoyed its addition to enriching our classroom. It definitely brings students to a higher level of understanding wave interaction at a molecular level.

    Matt Tumbach | Secondary Instructional Technology Leader | Tommy Douglas Collegiate | Saskatoon, SK

  • Excellent Smart Cart – I thought the cart was excellent. The quick sampling rate for force will be very useful for momentum and collision labs we do. I’m recommending we include this in our order for next school year.

    Reed Jeffrey | Science Department Head | Upper Canada College | Toronto ON

  • Your lab equipment is of the highest quality and technical support is always there to help. During the 25 years we have used a wide array of lab equipment including computer interfacing. Your Pasco line has a high profile in our lab and will continue to do so far into the future.

    Bob Chin | Lab Technician | Kwantlen Polytechnic University | Surrey, BC

  • Datalogging Activities are Cross-Curricular

    Throughout the province of Nova Scotia, PASCO’s probeware technology has been merged with the rollout of the new P-6 curriculum. We chose a number of sensors for use with our project-based activities. Both the functionality and mobility of PASCO’s dataloggers enable students to collect authentic, real-world data, test their hypotheses and build knowledge.

    What we find important to a successful implementation and adoption by teachers is showing that the probes are not a ‘standalone technology’. The datalogging activities are very cross-curricular and can incorporate math, english, science, and geography outcomes.

    We are excited to learn more about PASCO’s new weather sensor because our students enjoy projects where they can share and compare their data with weather stations from around the world and be part of a global community.

    Mark Richards | Technology Integration Consultant | Annapolis Valley R.S.B. | Nova Scotia

Exclusive Canadian Distributor
for PASCO Scientific

Contact Us

7-233 Speers Road
Oakville, ON Canada L6K 0J5
Toll Free: 1-877-967-2726
Phone: 905-337-5938
Fax: 1-877-807-2726
Technical Support: 1-877-967-2726  ext. 713
PASCO Support: 1-800-772-8700 ext. 1004
Order Form : Download .xls | Download .pdf

Save & Share Cart
Your Shopping Cart will be saved and you'll be given a link. You, or anyone with the link, can use it to retrieve your Cart at any time.
Back Save & Share Cart
Your Shopping Cart will be saved with Product pictures and information, and Cart Totals. Then send it to yourself, or a friend, with a link to retrieve it at any time.
Your cart email sent successfully :)