English Français
Search
Generic filters

1-877-967-2726

Trick or titrate!

Your students may have outgrown getting dressed up to go trick-or-treating, but they haven’t yet outgrown the desire to collect and consume as much candy as possible. So what can you do to help them avoid a belly ache and put that candy to good use? Perform an experiment!

Coincidentally, National Chemistry Week is coming up just before Halloween, and the theme this year is “Chemistry Colors our World”. We’ve put together a fun activity that incorporates core chemistry concepts, Halloween candy, and colour to fit the festive season. Instead of tasting the rainbow, your students will get to titrate the rainbow as they determine the amount of citric acid in Skittles™.

Citric acid (H3C6H5O7) is one of the first ingredients in Skittles which means your students can perform a titration with a base (in this case NaOH) to find the amount of citric acid per Skittle using the following balanced equation:

3 NaOH (aq) + H3C6H5O7 (aq) → 3H2O (l) + Na3C6H5O(aq)

Now, it’s likely that your students will volunteer to do a taste test to determine the candy’s acidity level. Remember, the first rule of the lab is that we don’t eat things in the lab. But that doesn’t mean we can’t create a nice Skittles solution!

Our recipe calls for 10 yellow Skittles added to enough water to make a 50mL solution— stirred, not shaken (until the candy dissolves). This process should take about 10 minutes.

With most titrations, chemists know that it’s all ‘bout that base— and now it’s time to prep it. Provide your students with a stock solution of 0.2 M NaOH and have them prepare a 0.020 M NaOH solution for the experiment. It’s always good practice for them to prep their own solutions using the appropriate glassware!

Once the base is ready, they should rinse and fill a Drop Dispenser with the titrant. Then they need to prepare the Skittles sample in a beaker by adding a 10 mL aliquot of the Skittles solution, some water, a few drops of phenolphthalein, and a pH Probe.

A drop dispenser with titrant along with the Skittles solution

The Skittles sample is still yellow from the dyes in the candy. Choose lighter colored Skittles for this step so the color change of the phenolthphalein indicator at equivalence will be obvious. Thymolphthalein will also work for some of the darker colored Skittles, and the pH data is like the pot of gold at the end of the rainbow and will show your students what their eyes might miss!

Now its time to titrate the treat. Start data collection and open the valve on the Drop Dispenser so that 1-2 drops of 0.02 M NaOH are added every second.

The Skittle solution starting to change color as the pH changes

Notice the subtle streaks of pink in the solution as the reaction proceeds and the pH changes.

Pink Skittle solution after titration

Students should record the volume when the pink is permanent and continue to titrate a few more milliliters of NaOH. Now they’ve created a great new Skittles color! More importantly, the data looks beautiful too.

Looking at the graph, the students can observe that the sharp change in the pH occurred when the indicator took on the permanent pink color.

NOTE: Even though citric acid is triprotic, there is only one noticeable equivalence point on the graph after all three of the ionizable hydrogens have reacted. This is because of overlapping buffer regions of the acids and their conjugates.

After the titration of the treat, it’s time for the tricky part— data analysis. Using the volume of NaOH at equivalence, the concentration of NaOH, and the balanced equation, the students can calculate the amount of citric acid in the 10 mL sample that was reacted. From here they can calculate the amount of citric acid in their original 10 Skittles sample and finally in each Skittle.

Now that they have the basic technique down, students can design their own experiment by coming up with a question that they could answer with a titration. For example, they could compare between different colours of Skittles, between Skittles and other candies containing citric acid, and between Skittles and lemon juice.

I hope your students enjoy this titration activity and get spooktacular results. Happy Halloween!

Related Products:


Sign Up For Our Newsletter - Get Info About New Products & Teaching Ideas

Sign Up For Our Newsletter

  • A big thanks for all the help and support you provided – I want to take some time to say a big thanks for all the help and support you provided me to select the best equipment in order to make the best possible use of the funds available. It is really exceptional that you happily connected with me multiple times even during the weekend and was always motivated to help. Please accept my big thanks for this.

    Gurpreet Sidhu | Physics Instructor | University College of North | The Pas, MB

  • Wireless Spectrometer Big Hit With Students – PASCO’s wireless spectrometer has been utilized very well by our earth science and physical science teachers. It’s an excellent piece of equipment and we have very much enjoyed its addition to enriching our classroom. It definitely brings students to a higher level of understanding wave interaction at a molecular level.

    Matt Tumbach | Secondary Instructional Technology Leader | Tommy Douglas Collegiate | Saskatoon, SK

  • Excellent Smart Cart – I thought the cart was excellent. The quick sampling rate for force will be very useful for momentum and collision labs we do. I’m recommending we include this in our order for next school year.

    Reed Jeffrey | Science Department Head | Upper Canada College | Toronto ON

  • Your lab equipment is of the highest quality and technical support is always there to help. During the 25 years we have used a wide array of lab equipment including computer interfacing. Your Pasco line has a high profile in our lab and will continue to do so far into the future.

    Bob Chin | Lab Technician | Kwantlen Polytechnic University | Surrey, BC

  • Datalogging Activities are Cross-Curricular

    Throughout the province of Nova Scotia, PASCO’s probeware technology has been merged with the rollout of the new P-6 curriculum. We chose a number of sensors for use with our project-based activities. Both the functionality and mobility of PASCO’s dataloggers enable students to collect authentic, real-world data, test their hypotheses and build knowledge.

    Mark Richards | Technology Integration Consultant | Annapolis Valley R.S.B. | Nova Scotia

  • We have a large number of PASCO wireless spectrometers and love how they have improved the learning experience for our students.

    Shawn McFadden | Technical Specialist | Ryerson University | Toronto, Ontario

  • During distance learning due to COVID-19 school shut down, I was given a short window to collect what I could from my classroom to teach online. The PASCO wireless sensors and Smart Carts were my top priority to collect to implement distance learning. By sharing experimental data with students via SPARKVue, the sensors were pivotal in creating an online experience that still allowed students to grow with their lab skills. It was easy to record videos of the data collection and share the data with my students. They did a phenomenal job examining and interpreting the data.


    Michelle Brosseau | Physics Teacher | Ursuline College Chatham | Chatham, Ontario

Exclusive Canadian Distributor
for PASCO Scientific

Contact Us

7-233 Speers Road
Oakville, ON Canada L6K 0J5
Toll Free: 1-877-967-2726
Phone: 905-337-8486
Technical Support: 1-877-967-2726  ext. 713
PASCO Support: 1-800-772-8700 ext. 1004
Order Form:  2022 AYVA Order Form

Save & Share Cart
Your Shopping Cart will be saved and you'll be given a link. You, or anyone with the link, can use it to retrieve your Cart at any time.
Back Save & Share Cart
Your Shopping Cart will be saved with Product pictures and information, and Cart Totals. Then send it to yourself, or a friend, with a link to retrieve it at any time.
Your cart email sent successfully :)