English Français
Search
Generic filters

1-877-967-2726

Growing Tomatoes With the Greenhouse Sense & Control Kit

Over the last couple of months, AYVA Educational Solutions has been growing tomato plants from the Let’s Talk Science Tomatosphere project. In this project, you are given two unknown packets of seeds, labeled T and U. One packet of seeds have been to space, while the other has not. The purpose of this experiment is to germinate and grow the tomato plants from both packets, tracking their growth, and hypothesizing which plants are the space seeds! You can guess which ones you think are the space seeds in the survey at the bottom of this post! Submit your hypothesis and you will automatically be entered into a raffle to win a free PASCO Wireless Temperature Sensor! If you would like to find out which seeds have been to space we encourage you to participate in this fantastic program!! Sign up for your own packet of seeds here.

We used PASCO’s ST-2997 Greenhouse Sense and Control Kit to monitor and regulate conditions for optimal growth! By researching the optimal growing conditions for a tomato plant, we adjusted the levels of the greenhouse system to meet those needs.

Using Blockly, we block coded the Greenhouse conditions we desired, programming a 24 hour sunlight and watering cycle, and ensuring the temperature stayed at 23 degrees Celsius at all times. Once the code was exported into the //control.Node, we planted 3 seeds from each packet on the appropriate sides (T or U).

We tracked the growth of our plants from January 20th to March 31st, as they developed, they went from seeds to leafy plants.

After just one week of being inside the Greenhouse, three out of six seeds germinated and sprouted! As a couple more weeks went by, two more seeds sprouted. Unfortunately, one seed (on the T side) did not germinate. Overall totaling three plants on the U side, two on the T side. At this point, we hypothesized which of the seeds had been to space and which had not, and wrote down our predictions to compare to the results later on. You can share your predictions in the survey at the bottom of this post, and find out which seeds were the space seeds!

In the fourth week of growth we decided to name the plants so that they could be more easily identified, charted, and referred to. On the U side, we named the tomato plants Tennessee, Toby, and Tiny Tim. Then on the T side, we named the plants Thiara and Theodore. Tiny Tim was the smallest plant during the beginning of the growth period, while Tennessee was the largest of the seedlings. Thiara also germinated the latest of any of the seeds, excluding the one seed that never sprouted. She quickly caught up to the others though, and in the 4th week she was the 3rd tallest of them.

After 6 weeks of growth, the plants were beginning to falter as they combatted against one another for nutrients and water. To replenish what they lost, we decided to separate the plants. Three of the plants, Tennessee, Tiny Tim and Thiara were moved to their own pots. However, Toby and Theodore remained in the self-regulating greenhouse to continue identical conditions. Within days of separating the plants, they all began to look healthier as they received the nutrients and space that they needed.

Into the ninth week of the experiment, the plants are growing taller and broader. Now that they each have their own space, they are able to thrive. The featured photo on the right shows Tennessee healthy and strong! With no one contesting him for nutrients, he is tall, green and healthy. At this point, they are almost fully mature, and will be entering the flowering stage shortly. This week we decided to reveal the answer to the lingering question we had been wondering for months – which seeds had been to space? Was it Theodore and Thiara (T Side)? Or perhaps did Toby, Tiny Tim and Tennessee (U side) spend some time in space? Find out the answer below!

Shoutout to the PASCO Greenhouse, as this project could not have been as successful without it! The self-regulating greenhouse allowed us to grow the plants healthy and strong -with minimal intervention from us. We were able to germinate 5/6 seeds and maintain the ideal moisture and temperature levels for the plants to grow, even amidst a cold and dark winter with many days out of the office. PASCO’s Greenhouse is the perfect educational kit for your classroom, teaching students several ecological concepts such as photosynthesis, anatomy of plants, and the ways different conditions affect the growth of plants – all with the new focus and importance of coding. You can start the Tomatosphere project yourself, and facilitate it with the Greenhouse Sense and Control Kit as well.

Make sure to answer the survey below to find out which seeds have been to space and for a chance to win a PASCO Wireless Temperature Sensor! We would love to hear what you think, so share your guesses with us, and your reasoning if you have any!


Featured Products:

PASCO ST-2997 Greenhouse Sense and Control Kit

SPARKvue

Wireless Temperature Sensor


Tracking Acceleration During A Hockey Game

Acceleration and velocity are present everywhere in life, from sports to driving, to walking around. With PASCO’s Wireless Acceleration Altimeter, I decided to see what I can learn from the 7 different data points that it records.

As a hockey player for 18 years, I’ve always wondered how quickly I’m moving on the ice, having never seen myself skate or recorded my speed. I assume of course, that I am right up there with Connor McDavid in terms of speed. I expect the sensor to be able to confirm that for me, while also telling me even more information – my acceleration and velocity in the x, y, and z directions.

The first step in my experiment was to put the sensor into remote data logging mode, so that the altimeter is recording data into its internal storage, instead of needing to be connected to a phone or computer.

When setting up the altimeter, I changed the frequency to 5 Hz, (5 data points per second). The altimeter can record up to 200 Hz but has a limited capacity for how much data it can keep in its internal storage. Once I had put the sensor into remote data logging mode, I used the included Velcro straps to attach it to the back of my shin guard and got ready to step onto the ice.

For the first 9 minutes of the data recording, I am putting all of my equipment on, so the velocity and acceleration are relatively low as I stay within the dressing room.  At the 10-minute mark warm-up begins. For these 5 minutes, I’m constantly moving while I’m skating on the ice, so the acceleration is constantly changing and staying at numbers of higher magnitude.

The magnitude of the data is also slightly decreasing during the 5-minute stretch as I slow down and conserve more energy for the game. When comparing the peaks of this stretch to the peaks of acceleration later on, it’s clear that I wasn’t accelerating as much in warm-ups as I would be when I was playing the game.

At the 15-minute mark, the game begins and I’m on the bench for the first shift, but at 18.5 minutes I get on the ice. There are bursts of acceleration as I get up to speed and little sections of coasting until 19 minutes when there’s a stoppage in play and the acceleration goes down and remains relatively constant. When the play resumes my acceleration begins to spike and then fluctuates throughout the natural progression of the game, as I coast at times and race to get the puck at others.

Over the course of the rest of the game, the peaks and valleys of the graph show clearly when I was on the ice accelerating and decelerating, and when I was on the bench, with the little movement just being from sliding across the bench or standing up to cheer on a goal.

In the different peaks in the graph, it can be seen which shifts I accelerated the most, and which I had a bit less energy. On the first shift of the game, my peak acceleration is 32 m/s2, which is high, but not the highest acceleration of the game. On this shift though, there are 60 data points where my acceleration is greater than 15 m/s2.

Because we are recording at 5 Hz, we can take that to mean that there are 12 seconds in which my acceleration is greater than 15 m/s2. This is not all in one 12-second stretch though, it’s spread out throughout the shift in groupings or bursts of acceleration. By comparison, the shift with the next highest amount of data points over 15 m/s2 is my 4th shift, in which there are 50 such points, or approximately 10 seconds. This 2-second difference is evidence to point towards my fatigue, as the number of such data points decreased more as the game went on, with the final full-length shift containing only 34 of these points (6.8 seconds).

The highest acceleration recorded is 34 m/s2, and that is on the 5th shift of the game. It would seem abnormal that my highest acceleration would be on the 5th shift, as I am already more tired at this point. There is context to explain the abnormality though – on the 5th shift we broke out on a 2-on-1 and I had to accelerate as fast as I could to free myself up to receive the pass and score a goal.

Overall it was a very interesting and insightful experience looking into the data surrounding my skating and gameplay. While I don’t think my acceleration is quite up to par with Connor McDavid, I can say I’m satisfied with my results and happy that the data logging had ended by the time I ended up in the penalty box.

With the Acceleration Altimeter, there are so many cool and interesting ways to record and examine data, and I got a fascinating look at just one of the possibilities by taking it with me during my hockey game. Additionally, there are other data points that weren’t useful for my experience, with angular velocity, altitude, and acceleration in the z direction – playing hockey on a flat sheet of ice somewhat limits how much vertical movement can be performed. I’m excited to dig deeper into the data and for other possibilities and opportunities in the future to learn more, using PASCO’s wireless sensors.

Featured Products:

Wireless Accelerometer/Altimeter

SPARKvue

Determining the Coefficient of Kinetic Friction

Senior Physics students traveled to the local curling rink to explore friction, momentum and collisions.  Students were asked to design two different experiments to find the coefficient of friction between the curling rock and the ice (for both pebbled and swept ice).  Another goal of the lab was to determine whether a collision between two curling rocks was an elastic collision.

To determine the coefficient of kinetic friction, students used the PASCO Wireless Motion Sensor to measure the initial velocity of the curling rock that was launched.  Using the measured displacement and Kinematics equations, students calculated the acceleration of the curling rock, and the coefficient of kinetic friction between the rock and the ice.
Students used a similar setup to determine whether the collision between the curling rocks was elastic.

 

 

Using the PASCO Wireless Motion Sensor allowed for real-time accurate measurements in a chilly, fun lab (with all data collected within an hour).

Back in the Saddle

Life has been very interesting for the past 18 months. Did I say interesting? I meant challenging. With a global pandemic in force, how does education adapt? In my area, students had several months of online only learning, followed by online four days a week, then 3 days a week. Some students had full-time school, but they did only 2 classes a day. One class for the entire morning and one in the afternoon. New classes roughly every 10 weeks. How do you teach under these conditions? How do you teach science under these conditions? How do students learn under these conditions?

This blog won’t focus on that though. We are back at full time regular school (albeit with masks) for the first time since March of 2019. The focus is how do we reengage students? How do we bring back that sense of wonder and amazement of the world around them? For me, the answer is almost always the same; do hands on work. Experimentation is science and that is where the magic happens.

Once the dust settled of courses being filled, I knew I need students doing lab work. I couldn’t wait too long. It didn’t need to be anything complicated or deep, I just needed them to be hooked. Enter my PASCO Spark, the MatchGraph app and some Smart Carts.

Just bringing out the equipment got the students excited. “What are those?” I heard more than once. “Do we get to use them?” We did a quick run through and started on the first graph. The energy in the room was off the charts. There was so much buzz; arguments on who could do it better, what were they doing right, what were they doing wrong. This is what a classroom should be and such a simple way to get it.

Soon students were mastering the first linear graph and were looking very proud of themselves. I then told them there were more graphs. Deflation, curiosity and excited sped across their faces (at least their eyes) and they quickly started trying them. Carts were flying across the tabletops. 45 minutes passed in a blink and when I told them class was coming to an end and the equipment needed to be put away there were actual groans. They wanted to keep going! More than one student asked if we were going to use the equipment again. My answer was simple: tomorrow.

The students are hooked. They are excited to be learning. All it took was a little bit of learning play with my Smart carts and PASCO MatchGraph.

Increase Student Engagement with Virtual SPARKvue Labs

One of the hardest things about teaching online during this pandemic has been ensuring student engagement.  When my physics class moved online, I knew I wanted to somehow continue the lab component but wasn’t quite sure how… until I learned about shared sessions in SPARKvue.

Without a doubt, remote labs were not going to be as hands-on as they were in person, but students should still have the opportunity to engage in the other practical applications of labs like making observations and analyzing data.  A shared session in SPARKvue allows students to see data being collected in real time as if they were doing experiments themselves.  I recently used this feature for a circuit lab in my Physics class.

EM-3535 - Modular Circuits Basic

I set up a circuit using the modular circuits and pointed a webcam on it so the students could see the circuit I was building and manipulating.  I then started a shared session on SPARKvue and the students all joined in to see the voltage and current readings.  As I made changes to the circuits, I had students write various predictions in the chat of our meeting room.  The ability to predict and then see what actually happens in real time reflects what my students would do if they were engaging with this lab in person.

Doing this lab remotely not only allowed the students to predict, observe, and analyze; it actually opened up an avenue for more enriched discussions due to it’s collaborative nature and engaging the entire class at the same time.  When the data didn’t exactly match a prediction, I could point to aspects of the circuit through the webcam and connect what we were seeing to the data being shown.

The ability to predict, observe, and analyze is one of the key features of any science lab. By pairing a data collection program like SPARKvue with a webcam and the modular circuits kit (or other PASCO sensors), students can observe how data is being collected and engage in the process of scientific exploration of the concepts they would otherwise only see written on a page.  SPARKvue is changing not only the physical classroom but also the virtual classroom into a more engaging, thought-provoking, and dynamic environment for learning.

Resource

How to start a shared session in SPARKvue:

Demonstrating Projectile Motion

Projectiles is a major concept in every physics class, but finding a lab activity to demonstrate this concept can be quite difficult. I have tried a number of ideas in the past, such as rolling balls off tables, firing nerf guns (that seem to never shoot consistently), launcher-building competitions, and so many more. While these activities were okay, they were all limited in terms of measurable variables. The projectile problems I give my students often have some sort of initial “launch” velocity, proves to be the hardest thing to measure in a practical setting.

With the Wireless Smart Gate, this is no longer an issue. The Smart Gate will seamlessly measure the speed of any object that passes through it. Now when my students roll a ball off a table, the ball travels through a Smart Gate first giving them the speed at which the ball leaves the table. Before the Smart Gates, students would have to predict the speed of the ball based on the ball’s range, but they never had a value to compare their predictions with. The Smart Gate allowed for a comparison and when students compared their values, they were amazed at how a value calculated on paper translated into a real-world measurement.

Angled launches remained a stumbling block for me. Rolling a ball through a Smart Gate is easy but launching one through? Pasco has angled projectile launchers available to purchase, but I thought I would build my own to see how feasible it would be to have my students eventually build the same. I wanted a product that would launch a ball through the smart gate at various angles so that students could see how the launch angle and speed affects ball flight.

The following pictures are of the finished product. The ball is loaded in the top of the pvc pipe where it rests on a bolt. The bolt is attached to two springs so that when it is drawn back and released, the ball is launched. The video shows the launcher in action. You can see how, as the ball moves through the smart gate, the Smart Gate automatically records the velocity of the ball. The dual beam technology in the new Smart Gate allows for different sized balls to be used, as the velocity is based on the time difference between the two beams. The old photogates only had one beam and you had to calibrate the sensor to the specific size of the object moving through the beam.

Being able to instantly measure the velocity of a projectile before it flies through the air is extremely valuable in the application of this concept. While there are things I would do differently in the construction of the launchers, students were able to see how the different velocities and angles affect the range of the projectile. Once again, students predictions matched measured values closely and they were again amazed at the ability to see this difficult concept in action.

Inquiry.  The buzzword of the day!

Inquiry.  The buzzword of the day.  How does it relate to science?  Easy; it is science!

How to make it meaningful is the real question.  How do we engage students and make it relevant to them?  What can draw them in?  What will impact them at a deeper level?

For me, it was car crashes.  Momentum involves studying collisions and there are a lot of crashes with teens learning to drive.  Add to the fact that my city is a giant hill and the lesson just kind of built itself.  We would study materials to see what could protect you in the case of a crash.
Smart Carts, SparkVue and a random assortment of materials.  Styrofoam, rubber, cotton, what would work best?  The students had preconceived ideas…perfect.

I turned them loose with the barest of hints.  What are you worried about in a crash?  What should we measure?  What situations do we need to test?

They picked random materials and got to it.  The discussions were great!  Arguments about what to use, how to set it up, how to measure, what to measure.  They looked to me to settle disputes and I said “Work it out yourselves.  You can do this.”  Here’s what they came up with.

Doing the two graph setup measuring velocity vs time and force vs time they could identify when the collision took place easily.  They could use the area of the force-time graph to calculate impulse.

The results surprised them. That lead to more questions.  And that is what science, and inquiry, is all about.

Going Deeper with Newton’s Second Law and PASCO Smart Carts

I’ve been teaching physics for years and for most of the years that meant one thing: ticker tape.  Don’t get me wrong, there is a certain elegance to labs using ticker tape; there just isn’t as much depth.  Enter the PASCO Smart Cart and SparkVue software.

I’ve had the carts for a few years now and I keep learning more things to do with them.  I wanted students to go deeper into Newton’s laws but how could I do that with the Smart Carts and SparkVue?  Here’s what I came up with.

I took my old set-up from the ticker tape days.  Have a cart pulled across a table pulled by a hanging mass over a pulley. Change the amount of mass on the cart and the amount pulling the cart. Calculate the acceleration using kinematics.  Compare the mass times the acceleration to the weight hanging over the edge.

That set-up is lowish friction, which we could hand-wave away, but I never liked doing that.  If we used the carts on a track with the Super pulley would I get better results?  Indeed, I did. Measured accelerations were within 10% of theoretical. Could I do better?

I attached the hook to the carts and used the force sensor to measure the tension pulling the cart.  Using the data from the force sensor I got within 1% of expected values!  This is great accuracy and a starting point for going deeper.  Why does the force sensor start with the force of the hanging mass and then drop?  Why does the force sensor data give better data then using the values of the hanging mass?

The old lab changed the mass on the cart and the mass hanging off the edge to compare the effects of changing the mass of the system or changing the force of the system.  Good but not great. Now I can do the lab over the pulley or run the string through the end stop for increased friction.  The students can compare different variations of the set up in the same amount of time it took with the ticker-tape.

With ticker-tape it took a long time and didn’t go very deep; basic understanding only.  Now with the Smart Carts and SparkVue we can go deeper, quicker.  Isn’t that what we are after?  Critical thinking and deeper learning?  PASCO’s products offer a chance for that and I am grateful for it.

Using the PASCO Smart Cart to Teach the Right-Hand Rule

We high school physics teachers tend to associate the right-hand rules with electromagnetism. As a student, my first encounter with a right-hand rule was when I was introduced to the magnetic field produced by the electric current in a long, straight wire: if you point the thumb of your right hand in the direction of the conventional current and imagine grasping the wire with your hand, your fingers wrap around the wire in a way that is analogous to the magnetic field that circulates around the wire.

I only later discovered that this same rule can be applied to rotational quantities such as angular velocity and angular momentum. The topic of rotation has become more important in AP physics when the program was updated from the older Physics B program. Strictly speaking, AP Physics 1 does not include the use of the right hand rule for rotation, but I have found that introducing it actually helps solidify student understanding of angular vectors.

Describing the direction of rotation as being clockwise or counterclockwise is helpful only if all parties involved have a common point of view, which is ideally along the axis of rotation. As with left and right, clockwise and counterclockwise depend on your point of view. This is why it is often preferable to describe translational motion in terms of north, south, east, west, up, and down, or with respect to a defined x-y-z coordinate system; directions can be communicated unambiguously, provided that everybody uses the same coordinate system.

It is precisely for this reason that the right hand rule can (and should) be used for rotational motion. Consider the hands of an analog clock. Assuming that the clock is a typical one, it will have hands that turn “clockwise” when viewed from the “usual” point of view, but if the clock had a transparent back and you were to view it from the back you would see the hands turning “counterclockwise!” The observed direction of rotation (clockwise or counterclockwise) depends on the observer’s point of view.

Instead of using clockwise and counterclockwise, we can describe the direction of rotation with a right hand rule: if you curl the fingers of your right hand around with the direction of the rotational motion, your thumb will point in the direction of rotation, which will be along the axis of rotation. Applying this to the above we find that when viewing a clock from the front, the rotation of the hands is three dimensionally into the clock (away from the observer), and when viewing a clock from the back side, the rotation of the hands is three dimensionally out of the clock (toward the observer). If two people view a transparent clock at the same time but one observes it from the front while the other observes it from the back (i.e. the clock is between the two people who are facing each other), they will disagree on which way the hands turn (clockwise or counterclockwise) but will agree on this direction if both use the right hand rule convention to describe the direction of the rotational motion – both observers will agree that it is directed toward the person viewing the back side of the clock.

When first learning about the right hand rule, students are often initially confused, with many students failing to grasp why such a rule is even useful in the first place. Before introducing the right hand rule I like to begin by holding an object such as a meter stick while standing at the front of the classroom. I then rotate the meter stick through its center so that the students claim that it is rotating “clockwise” when asked. Being careful to keep the rotational motion as constant as possible, I then walk to the back of the room. It’s important that the students see that at no point did I stop the rotation of the meter stick – it is still turning the same way as before, and yet at some point each student finds that they must turn around in order to continue to see it. Many students are astonished to see that the meter stick is now rotating counter clockwise from their (now reversed) point of view. This helps establish the need for a better way to describe rotation.

I then introduce the right hand rule and go through a couple of examples. Traditionally, this would have been the end of it, but last year I was able to take advantage of my newly acquired PASCO Smart Cart, which has a wireless 3-axis gyroscope (i.e. rotational sensor). The coordinate system is fixed with respect to the cart, and is printed on the cart itself, but I like to make this more visible by attaching cardboard cutout vectors onto the cart which make the axes more visible to the students while I hold the cart up for them to see. I then set up a projected display of the angular velocity of the cart along each axis simultaneously. I then ask the students how I must turn the cart in order to get a desired rotation of my choosing (i.e. ±x, ±y, and ±z).

I really like how the carts, along with the live display of the 3 angular velocity components make the admittedly abstract right hand rule so much more concrete. Seeing the display agree with our predictions makes it so much more real and is much, much better than me merely saying “trust me.” I have found that introducing and using this right hand rule with rotation has made using this same rule much more natural when using it to later relate the direction of current flow and the magnetic field.

The Physics of Kawhi Leonard’s Incredible Buzzer Beater

It was the shot heard across Canada.  There were a lot of factors that made Kawhi’s buzzer beating basket so remarkable.  Aside from there being no time left on the clock and the weight of a sport’s nation on his shoulders, Kawhi had to overcome the backward momentum that is inherent in a ‘fadeaway’.  The purpose of a fadeway is to create space between the shooter and defender(s), which was a necessity for Kawhi as there were several seriously tall 76ers trying to screen his shot.

Over-coming the fadeway’s backwards momentum is no easy feat as it requires players to quickly calibrate in their minds the additional force that is required to successfully sink a basket, which for most mere mortals is not intuitive.  The shot is so challenging that only a handful of NBA basketball players have been able to reliably make this shot; and we’re talking the great players such as Michael Jordan, Lebron James, Kobe Bryant and of course Kawhi Leonard.

The video below provides an extreme example of backwards momentum with a soccer ball shot from the back of a truck

Investigating Kawhi Leonard’s shot in the lab

In addition to backwards momentum there were many additional physical factors at play such as the angle of the shot and gravity.  Investigating all these forces in a single activity would not be practical.  Fortunately most of these forces can be isolated and explored in the lab using PASCO sensors, software and/or equipment.

Exploring The fadeaway’s negative momentum using PASCO

PASCO offers an intriguing and affordable solution to model the dramatic effect of a fadeaway’s negative momentum on projectile distance.  PASCO’s mini launcher will consistently launch projectile balls the same horizontal distance for a set angle, assuming that the launcher is stationary.  If however, the launcher is placed on PASCO’s frictionless cart, the force of pulling the trigger will cause the cart to move backwards at a velocity that can be measured using the motion sensor.  Students will be surprised to see that even though the cart travels just a few centimeters, the overall projectile distance is significantly reduced.  This can be a very simple demonstration or an in-depth quantitative analysis that factors in the projectiles initial angle and velocity, the time of flight and even the k-constant of the spring.

Other Forces Affecting a Basketball Shot

Momentum and Explosions

When a basketball player takes a jump shot (as with a fadeway), the player and the ball could be viewed as 2-object linear system if you ignore other outside forces such as gravity.  What’s interesting, and perhaps not apparent to many students, is that the basketball will exert an equivalent force to the player as the player is exerting on the basketball (Newton’s 3rd Law).  Of course because of the very significant inertia (mass) difference between the two objects, the basketball will accelerate at a much fast rate than the player.  The player however will experience some acceleration in the opposite direction to that of the basketball.

Using Smart Carts to explore Momentum and Explosions (Free Lab)

The Wireless Smart Carts are equipped with an exploding plunger.  Multiple 250g bars can be added to one cart to skew the masses.  The velocities of both carts are measured using the cart’s internal position sensors enabling students to determine that momentum is conserved in a linear exploding system.

ME-1240 Smart Cart (Red)

ME-1241 Smart Cart (Blue)

ME-6757A Cart Mass (set of 2)

Newton’s Third Law

The player’s force on the basketball will be equal to the opposing force of the basketball onto the player.  Of course most students will consider this a ridiculous proposition until they prove this for themselves.

Using Smart Carts to explore Newton’s Third Law

There are several ways the carts can be used.  The simplest activity is for two students to have a tug-of-war using the internal force sensors of two Smart Carts and an elastic band as depicted in the image.  The equal but opposite forces will be confirmed, however in relation to a basketball player taking a shot, it has some shortcomings as the forces are pulling as oppose to pushing.

An equally simple activity, and one more relevant to the basketball shot scenario, is to collide two Smart Carts (with magnetic bumpers attached to their force sensors).  As both carts have equivalent masses, students may not be surprised to see the impact forces are identical.  However, what will probably surprise your students, are the force measurements that occur during a collision when one cart is weighed down with one or more 250g masses.  Using their intuition, most students will speculate that one of the carts will experience a much greater force than the other.  Of course, Newton’s 3rd Law will triumph and the forces will be identical.

 

 

Gravity

What goes up must come down.  This is true of course for all earth bound objects (including basketballs) due to the ever present force of gravity.  Without gravity the trajectory of a basketball player’s shot would be straight to the ceiling of the arena, where most of the fans would be viewing the game.

Exploring the accelerating force of gravity using the Motion sensor

PASCO offers several technologies and techniques for measuring gravity including the Wireless Smart Gate and Picket Fence and the new Freefall apparatus.  Both of these techniques are accurate and precise means to measure gravity.  A third technique and one more appropriate for relating to a basketball shot is to measure the position of a vertically tossed ball and then have the software derive an acceleration graph from this data.  Statistics, including the Mean of the acceleration plot can be calculated by the software for the period when the ball was in freefall as shown in the graph.

 

 

 

 

 

 

 

 

 

 

 

The average acceleration in the free fall period is approximately -9.5 m/s/s

 

 

Included Products:

  • 1
  • 2

Sign Up For Our Newsletter - Get Info About New Products & Teaching Ideas

Sign Up For Our Newsletter

  • A big thanks for all the help and support you provided – I want to take some time to say a big thanks for all the help and support you provided me to select the best equipment in order to make the best possible use of the funds available. It is really exceptional that you happily connected with me multiple times even during the weekend and was always motivated to help. Please accept my big thanks for this.

    Gurpreet Sidhu | Physics Instructor | University College of North | The Pas, MB

  • Wireless Spectrometer Big Hit With Students – PASCO’s wireless spectrometer has been utilized very well by our earth science and physical science teachers. It’s an excellent piece of equipment and we have very much enjoyed its addition to enriching our classroom. It definitely brings students to a higher level of understanding wave interaction at a molecular level.

    Matt Tumbach | Secondary Instructional Technology Leader | Tommy Douglas Collegiate | Saskatoon, SK

  • Excellent Smart Cart – I thought the cart was excellent. The quick sampling rate for force will be very useful for momentum and collision labs we do. I’m recommending we include this in our order for next school year.

    Reed Jeffrey | Science Department Head | Upper Canada College | Toronto ON

  • Your lab equipment is of the highest quality and technical support is always there to help. During the 25 years we have used a wide array of lab equipment including computer interfacing. Your Pasco line has a high profile in our lab and will continue to do so far into the future.

    Bob Chin | Lab Technician | Kwantlen Polytechnic University | Surrey, BC

  • Datalogging Activities are Cross-Curricular

    Throughout the province of Nova Scotia, PASCO’s probeware technology has been merged with the rollout of the new P-6 curriculum. We chose a number of sensors for use with our project-based activities. Both the functionality and mobility of PASCO’s dataloggers enable students to collect authentic, real-world data, test their hypotheses and build knowledge.

    Mark Richards | Technology Integration Consultant | Annapolis Valley R.S.B. | Nova Scotia

  • We have a large number of PASCO wireless spectrometers and love how they have improved the learning experience for our students.

    Shawn McFadden | Technical Specialist | Ryerson University | Toronto, Ontario

  • During distance learning due to COVID-19 school shut down, I was given a short window to collect what I could from my classroom to teach online. The PASCO wireless sensors and Smart Carts were my top priority to collect to implement distance learning. By sharing experimental data with students via SPARKVue, the sensors were pivotal in creating an online experience that still allowed students to grow with their lab skills. It was easy to record videos of the data collection and share the data with my students. They did a phenomenal job examining and interpreting the data.


    Michelle Brosseau | Physics Teacher | Ursuline College Chatham | Chatham, Ontario

Exclusive Canadian Distributor
for PASCO Scientific

Contact Us

7-233 Speers Road
Oakville, ON Canada L6K 0J5
Toll Free: 1-877-967-2726
Phone: 905-337-8486
Technical Support: 1-877-967-2726  ext. 713
PASCO Support: 1-800-772-8700 ext. 1004
Order Form:  2022 AYVA Order Form

Save & Share Cart
Your Shopping Cart will be saved and you'll be given a link. You, or anyone with the link, can use it to retrieve your Cart at any time.
Back Save & Share Cart
Your Shopping Cart will be saved with Product pictures and information, and Cart Totals. Then send it to yourself, or a friend, with a link to retrieve it at any time.
Your cart email sent successfully :)