1-877-967-2726      

Search
Exact matches only
Search in title
Search in content
Search in comments
Search in excerpt
Filter by Custom Post Type

Students are familiar with the concept of weather – they likely use an app to see what it’s going to be like every morning to decide what to wear. But do they know the difference between weather and climate? How can we help them understand that weather refers to local conditions over a short period of time while climate identifies atmospheric behavior over longer periods of time?

We can start by having them measure “what’s happening in your neck of the woods”. The question shouldn’t be “What is THE weather like today?” Instead it should be, “What is YOUR weather like today?”

This change in context can help them understand that weather is local. The conditions that they experience could be very different not only from what someone experiences across the country, but even from what the weather is like just a few miles away.

Using the Wireless Weather Sensor with GPS you can measure and monitor local weather conditions. Simply take it outside, connect to SPARKvue, and start collecting data.

The sensor is capable of making 17 different measurements. To keep the data collection focused, you can set up a display to make the measurements look like a dashboard for your own personal (temporary) weather station

In SPARKvue you can change the units to match the units that are reported on actual weather stations. For example, in science we typically measure temperature in degrees Celsius, but weather in the US is reported in degrees Fahrenheit. This provides a good opportunity to talk about measurement units and how they are related.

Once the students collect “their” weather data, they can check that against the forecasted weather for the area at the same time.

To get a broader perspective, students can compare “their” weather to conditions in other places at the same time. For instance, PASCO scientific is at a latitude of about 38.8 degrees north. Across the country, at about the same latitude, but a very different longitude, lies Washington, D.C.

The change in longitude, going from the West Coast to the East Coast, can mean very different weather.

Your students don’t have to travel across the country to see differences in weather. Having multiple students collect data at different areas around the school or home provides a great opportunity to analyze data and incorporate science and engineering practices into your lesson. They can analyze and interpret the data by comparing both to each other’s data from different locations around the school, and to local and remote weather station data on the same day at the same time.

Using the Wireless Weather Sensor with GPS, students can not only collect data across a range of locations but also over periods of time. Weather can change from minute-to-minute, hour-to-hour, and season-to-season. As they look at averages over longer and longer periods of time, they are really beginning to look at how the climate is changing – not just short-term weather phenomena. To appreciate the difference between weather and climate, they would need to do some additional research and look at long-term historical weather data for their area.

Next time your students ask about THE weather, use the Wireless Weather sensor to collect some data so they can collect evidence about THEIR weather.

Related Products:

Wireless Weather Sensor with GPS (PS-3209)
SPARKvue Single User License (PS-2401)

 

Six members of the AYVA Team spent last week in Roseville, California at PASCO Scientific’s headquarters.

We were excited to make new acquaintances and to reconnect with our friends from years gone by.

Representatives from more than 40 different countries had an opportunity to share success stories and receive training on PASCO’s latest products and new learning management software.

We even got a sneak peek at PASCO’s Roadmap for future development initiatives. A big shout out and thank you to our very gracious hosts at PASCO.

The handheld science learning device integrates PASCO probeware and data collection and analysis software with the new Lab Manager classroom management application

Hands-on investigation helps students understand how scientific knowledge develops, while sparking their curiosity, interest, and motivation in science. Earlier this month PASCO previewed their next generation of dataloggers for hands-on, inquiry-based science at NSTA in Atlanta.

With the SPARK LX and LXi, teachers can view, monitor, and control all student devices, while students use this fully integrated handheld for planning and carrying out investigations. The SPARK LX  and LXi seamlessly blend PASCO probeware, SPARKvue data collection and analysis software, and PASCO’s new Lab Manager classroom management application, all on one device. With superior processing power, a rugged, splash-proof case, and a full-color display, the 9.6-inch Android™ touchscreen device has been built specifically for student science collaboration. It can be used online or offline.

There are two models: the SPARK LX and the SPARK LXi.

The LX model has been designed for use with PASCO Wireless Sensors or with PASPORT Sensors plus an AirLink interface. It comes with eight virtual ports for simultaneous wireless connection.

The SPARK LXi is designed for use with PASCO Wireless or PASPORT Sensors. It includes eight virtual ports plus two PASPORT ports, as well as ports for the included Fast Response Temperature Probe and Voltage Probe.

With either model, students can collect data and share their investigations, with or without sensors, with the device’s onboard sensors.

PASCO’s new Lab Manager application is included on both models and has been designed to simplify classroom management during science investigations. It allows teachers to monitor and control all student screens, broadcast their screen for lab demos, create lab groups for data-sharing, share student group screens, and send and collect files, quizzes, and exams to and from individual students or groups.

The SPARK LX and SPARK LXi also come with PASCO SPARKvue, MatchGraph, and Spectrometry software, as well as Microsoft Office, Google Docs, and GIS software.

Additionally, teachers can download any of 500 free labs from the PASCO Digital Library.

Both models will ship in mid-June.

Rick Debenedetti shares his experience with using a class set of Smart Carts to explore kinematics.  His presentation includes tips and demonstrations using SPARKvue software to introduce displacement, velocity and acceleration to a grade 11 physics class.

Learn how wireless technology allows students to explore authentic learning experiences within a limited time frame. Using wireless sensors means teachers can focus on the students rather than the equipment, and students are more likely to enjoy and learn from the activities, as they feel natural and are spontaneous.

This session demonstrates kinematics for senior physics.

The PASCO Smart Cart is the ultimate tool for studying kinematics, dynamics and more. It features built-in sensors that measure force, position, velocity, and 6 degrees of freedom in acceleration. Measurements can be made both on or off a dynamics track and transmit the data wirelessly over Bluetooth®.

PASCO’s new wireless weather & environmental sensor with GPS provides for some obvious investigations such as monitoring changes in weather.  However, as this sensor measures 17 different parameters, there are almost countless ways that measurements can be used individually or in combination to explore the world.

Two of the weather sensor’s 17 measurements relate to speed – the wind speed and movement speed of the sensor itself (as provided by the GPS sensor).  Recognizing the similarity of these two measurements I was curious if the weather sensor’s GPS could be used to assess the accuracy of the weather sensor’s wind speed measurement.

GPS speed has proven to be very accurate, especially in open spaces, where there are no trees or buildings blocking satellite signals.  Therefore, using the GPS to evaluate the accuracy of the wind speed sensor is a reasonable test.

Without over thinking the experimental test, I decided to go for a quick run across our parking lot holding the sensor up in the air like a torch carrier in the Olympics (okay maybe I’m over-romanticizing) and see how the headwind I generate from my sprint correlates to the GPS Speed measurement.

Being in less than optimum shape, after a long winter hiatus from anything resembling exercise, I kept my run to about 100 M (50 M in both directions).  Looking at the satellite image below that depicts my run (each dot is a separate measurement), you’ll see that there were cars in my way requiring several strenuous leaps.

Notwithstanding the strange looks I received during my run, the test proved quite successful.  The graph below shows wind speed in green and GPS Speed in blue.  During the first half of the run the two speeds correlate very closely.  On my return however there is a significant difference which I suspect was caused by a trailing wind gust that would have the effect of reducing the headwind.

In conclusion it appears that the Weather Sensor measures wind speed fairly accurately. However, in this test the wind speed sensor is measuring headwind which is a combination of traveling speed and actual wind.  Therefore more rigorous testing would be required to make a fair assessment, with external sources of wind eliminated or at least accounted for (can you think of ways how this might be done?).

In the classroom I suspect the weather sensor will be used in many interesting ways that has little to do with weather.  In the months to follow I hope to share some more of my playful discoveries with this sensor.

There is a great deal of biochemistry in the science curriculum that is a part of the foundational knowledge. One of the major molecules of study are proteins including how they are able to catalyze reactions.
The PASCO pressure sensor provides a very easy method and relatively quick way to determine how various factors might affect the rate of reaction. Students can then infer how the enzyme might be denatured due to the decrease in activity.
PASCO Products Used:
Alternately the Wireless Pressure Sensor can be used for this experiment.

Exploring Energy in Motion.
An amazing science fair project by Ryan V. of Oakville, Ontario.

If at first you don’t succeed, try-try again and this was exactly Ryan V’s attitude in completing his remarkable grade 7 science fair project on Magnetic Linear Accelerators.

The accelerator that Ryan built used a series of magnets and stationary marbles positioned in stages along a wooden track that resulted in a chain reaction with a final marble shooting off the end at an impressive speed.

Ryan was very interested in knowing the marble’s speed at various stages along the track and tried numerous techniques to take accurate measurements – however, all attempts were unsuccessful.

This is where AYVA and PASCO Scientific were able to help!  Using a PASCO Smart Gate and a Wireless Airlink Ryan was able to get the data he needed.

See the video for an excellent explanation and demonstration of how it all works.  No doubt Ryan will get an A++ for his hard work and persistence.

Products used:

Smart Gate

AirLink

Capstone

After introducing the concept of “like dissolves like,” sensors can be used to quantify how much solute is dissolved in a solution.

Conductivity is a great tool for quantifying the amount of particular types of solute in a solution. Depending on the type of solute, students can “conduct” an experiment that makes them concentrate on concentration.

There is a linear relationship between the concentration of an electrolyte and its conductivity.

In this activity, based on a lab in Essential Chemistry, the relationship between concentration and conductivity is explored and data is collected with the Wireless Conductivity sensor. The first set of data represents a solution with increasing amounts of salt added. Since salt is an electrolyte, the conductivity is linearly related to the concentration. The second set of data represents a sugar solution. Sugar is soluble in water but, as a non-electrolyte, the concentration cannot be related to the conductivity measurement.

Sugar may be sweet, but the conductivity data of sugar solutions is definitely not. Luckily, sugar molecules have a chiral center and are optically active. The amount of optical rotation will depend on the type and amount of sugar present. Using a Wireless Polarimeter, you can measure the optical rotation of a variety of sugar solution concentrations.

The Polarimeter measures the light intensity vs the angle of rotation.

The change in optical rotation is linearly related to the concentration of the sugar solution.

Determining the amount of solute in a solution is an important part of any chemistry class. Having the appropriate sensors, and knowing the properties of the solutes and solvents, gives students the tools they need to quantify the concentration of a solution.

Related Products:

Wireless Conductivity Sensor (PS-3210)
Polarimeter (PS-2235)

The winter season is almost upon us. That means thoughts of holidays, hot chocolate, and Poinsettias. In chemistry class, you can use Poinsettias to introduce the concept of pH. Whether you are studying acids and bases, or simply looking at chemical changes, being able to observe changes in pH is an important tool for your budding chemistry students.

A Poinsettia is one of many plants containing pigments that respond to changes in acidity.

You can take the mystery out of litmus paper and pH indicators by having the student create their own Poinsettia pH paper. The red pigment from deeply colored poinsettias can be extracted and used to make paper strips to test whether a liquid is an acid or a base.

 

To make the Poinsettia pH paper:

  1. Cut the flower petals (actually specialized leaves called bracts) into strips.
  2. Place the strips into a beaker.
  3. Add enough water to cover the plant material and simmer on a hot plate.
  4. Filter the liquid into another container and discard the solid plant matter.
  5. Saturate a piece of filter paper with the poinsettia extract.
  6. Allow the filter paper to dry and cut the colored paper into test strips.

Now you can use the strips to test the acidity and basicity of solutions. To make the activity more meaningful, you could construct a pH chart for your plant extract paper. Using some stock solutions of 0.1 M HCl and 0.1 M NaOH, you can prepare solutions of different pH values. Your students can quantity the pH of the new solutions with a Wireless pH sensor. Now that they have solutions of a known pH, they can create a pH color chart with the poinsettia paper. (The color range for acids and bases with depend on the particular plant.)

 

Poinsettia pH paper    
pH
Color

 

With this brief activity, you have the opportunity to take a holiday tradition and turn it an engaging and educational experience.

Related Products:

November 9-11, 2017
Delta Hotels Toronto
655 Dixon Road
 ~~~

Bring on the Labs!
John Fittler
Thursday, November 9 – 9:00-10:00 am – Room TH0109

See how a small school science teacher who has to teach chemistry, physics, and biology has adapted to the current teaching technology available creating sensor-based labs.

In this interactive workshop, John will use a variety of PASCO sensors developing biology, physics, and chemistry labs.
iPads and wireless sensors will show how a teacher-led demonstration can be easily accessed by lab groups for further analysis.
~~~
Inquiry and Devices and Probes, Oh My!
Clayton Ellis
Thursday, November 9 – 9:00-10:00am

Take a journey through a 21st Century Science Classroom. Through the use of various PASCO sensors and integration of a variety of apps, an inquiry-based classroom becomes an engaging and authentic place to collect and share data.

~~~

A Better Tool for Helping Students Understand Electric Circuits
Rick De Benedetti
Thursday, October 9 – 2:45 – 4:00 pm – STAO Playground

Struggling with teaching basic electric circuits?
This session will demonstrate a new package of modular components that make it easier to relate what is happening in a physical circuit to what is seen in a circuit diagram.

Rick will present an introductory set of activities and materials for the Grade 9 audience, followed by discussion about the merits and difficulties related to the use of current and voltage formulas.

 ~~~
Interactive: Inquiry and Devices and Probes, Oh My!
Clayton Ellis
Friday November 10 – 11:00am-12:30pm – STAO Playground

Take a journey through a 21st Century Science Classroom. Through the use of various PASCO sensors and integration of a variety of apps, an inquiry-based classroom becomes an engaging and authentic place to collect and share data.

~~~
Promoting Science Inquiry with Wireless Sensors
Rick De Benedetti
Friday, November 10 – 11:00am-12:30pm – STAO Playground

Learn how wireless technology allows students to explore authentic learning experiences within a limited time frame. Using wireless sensors means teachers can focus on the students rather than the equipment, and students are more likely to enjoy and learn from the activities, as they feel natural and are spontaneous.
This session will demonstrate kinematics for senior physics and possible uses in Grades 9 and 10 classrooms.
~~~

Extending Inquiry and Problem-Based Learning into the Digital Age
JASON PILOT, DOUGLAS JONES
Saturday, November 11 –  9:00-10:00am

This session will focus on a TLLP project where state of the art digital technology will be introduced into the science classrooms to enhance the already established Inquiry- and Problem-Based learning environment.

We will look at how environmentally-based case studies can be used for developing 21st century skills. An enhanced holistic understanding of Scientific Inquiry and Problem Solving is anticipated.

  • 1
  • 2
  • 6

Sign Up For Our Newsletter - Get Info About New Products & Teaching Ideas

Sign Up For Our Newsletter

  • A big thanks for all the help and support you provided – I want to take some time to say a big thanks for all the help and support you provided me to select the best equipment in order to make the best possible use of the funds available. It is really exceptional that you happily connected with me multiple times even during the weekend and was always motivated to help. Please accept my big thanks for this.

    Gurpreet Sidhu | Physics Instructor | University College of North | The Pas, MB

  • Wireless Spectrometer Big Hit With Students – PASCO’s wireless spectrometer has been utilized very well by our earth science and physical science teachers. It’s an excellent piece of equipment and we have very much enjoyed its addition to enriching our classroom. It definitely brings students to a higher level of understanding wave interaction at a molecular level.

    Matt Tumbach | Secondary Instructional Technology Leader | Tommy Douglas Collegiate | Saskatoon, SK

  • Excellent Smart Cart – I thought the cart was excellent. The quick sampling rate for force will be very useful for momentum and collision labs we do. I’m recommending we include this in our order for next school year.

    Reed Jeffrey | Science Department Head | Upper Canada College | Toronto ON

  • Your lab equipment is of the highest quality and technical support is always there to help. During the 25 years we have used a wide array of lab equipment including computer interfacing. Your Pasco line has a high profile in our lab and will continue to do so far into the future.

    Bob Chin | Lab Technician | Kwantlen Polytechnic University | Surrey, BC

  • Datalogging Activities are Cross-Curricular

    Throughout the province of Nova Scotia, PASCO’s probeware technology has been merged with the rollout of the new P-6 curriculum. We chose a number of sensors for use with our project-based activities. Both the functionality and mobility of PASCO’s dataloggers enable students to collect authentic, real-world data, test their hypotheses and build knowledge.

    What we find important to a successful implementation and adoption by teachers is showing that the probes are not a ‘standalone technology’. The datalogging activities are very cross-curricular and can incorporate math, english, science, and geography outcomes.

    We are excited to learn more about PASCO’s new weather sensor because our students enjoy projects where they can share and compare their data with weather stations from around the world and be part of a global community.

    Mark Richards | Technology Integration Consultant | Annapolis Valley R.S.B. | Nova Scotia

Canada's leading source for science and engineering teaching equipment

Contact Us

7-233 Speers Road
Oakville, ON Canada L6K 0J5
Toll Free: 1-877-967-2726
Phone: 905-337-5938
Fax: 1-877-807-2726
Technical Support: 1-877-967-2726  ext. 713
PASCO Support: 1-800-772-8700 ext. 1004