Explorations in Photosynthesis and Respiration

Originally posted on PASCO’s Blog. Blog is written by Bruce Taterka a teacher at West Morris Mendham High School in New Jersey

PASCO’s Wireless CO2 Sensor provides a powerful opportunity for students to explore the effects of photosynthesis and respiration in their local environment. This blog will describe how students can use a “Pretzel Barrel CO2 Chamber” to design experiments to measure rates of photosynthesis and respiration in a wide variety of settings and circumstances.

Background

Soil plays an important role in the carbon cycle and global climate because it acts as a carbon sink, sequestering CO2 from the atmosphere in the form of organic matter. The upper layers of soil contain organic matter that is actively decomposed by the soil community: microbes, insects, worms and other animals.
While respiration by soil organisms decomposes organic matter and releases CO2, the plant community is photosynthesizing and taking in CO2 from the atmosphere. So in this part of the earth’s carbon cycle, CO2 is moving in two directions – into the atmosphere from soil, and out of the atmosphere into plants. We refer to this transfer of carbon as “CO2 flux.” With PASCO’s Wireless CO2 Sensor, students can explore the carbon cycle, plant and soil biology and climate change by measuring CO2 flux.

The rate of CO2 flux depends on a wide variety of factors. For soil, the rate of CO2 production may be affected by:

  • The content and type of organic matter in the soil
  • Temperature
  • Moisture
  • Sunlight
  • Soil chemistry

For the plant community, the rate of CO2 production may be affected by:

  • Type and density of plants
  • Temperature
  • Moisture
  • Sunlight
  • Soil chemistry

Carbon flux will vary with the weather, throughout the day, and throughout the year as the seasons change. Measuring CO2 flux provides an excellent jumping-off point for engaging in NGSS practices regarding the earth’s carbon cycle.

 

Creating a model of the Earth's carbon cycle

Figure 1. Collect data, and construct explanations. Integrating a range of analytical results can form the basis for creating a model of the earth’s carbon cycle and designing solutions to problems such as climate change and food production.

Students can define their own research questions and problems, analyze the results, and generate designs to conduct a variety of controlled experiments using the chamber. Most experiments will identify the CO2 concentration inside the chamber as the dependent variable and will test the effect of an independent variable of students’ choice.

On land students can compare CO2 flux on soil, lawn, forest, sunny vs. shady areas, and in a wide variety of other situations. In general, when the chamber is on bare soil or leaf litter, the CO2 concentration inside the chamber will be expected to increase, usually within a short time period such as 5 or 10 minutes. Figure 1. For longer investigations the sensor can be placed in logging mode (storing data to internal memory) and left for ~24hrs before the batteries will be depleted.

The chamber can be placed over plants that can fit inside it, in which case CO2 concentration inside the chamber should decrease, although it may be counteracted by respiration. The chamber can even be used on water by wrapping a piece of foam insulation around it, allowing it to float.

In any type of environment, students can design their own studies to investigate the effect of different variables on CO2 flux.

How to make a Pretzel Barrel CO2 Chamber

The chamber is made of a plastic pretzel container available in supermarkets.

  • Draw a straight line around the container, then cut it in half using a razor knife to form two large plastic chambers open at the bottom and closed on top.
  • You have two options here. You can cut a hole in the top for a CO2 sensor using an electric drill or a razor knife. The hole should allow the CO2 sensor to fit snugly, keeping the container airtight; the hole can be adjusted with tape if necessary to create a tight seal around the sensor. Alternatively, the sensor can be placed inside the container since it’s wireless!
  • The chamber is now ready to be used by placing it on top of soil and measuring CO2 flux.

For aquatic environments, wrap a piece of foam pipe insulation around it.

Related Products:

2019 PASCO Catalogues

We are currently working on our annual catalogue mailings.

If you would like to add yourself to our list or simply stay on the list please let us know!

To sign-up, please complete this form.

Sign Up For Our Catalogues

The Joy of Lab Design

I’ve been a theorist and an experimentalist at different times throughout my career.  When at university, theory won out over experimental but now, as a teacher of high school, experimental easily wins.  There is nothing like watching students figure out problems, deduce scientific laws and test theories.  The old problem was the equipment.

What can I do with ticker-tape?

How responsive are the thermometers?

How reliable is the data?

How big are the errors?

Is it going to work?

But now, with my PASCO equipment, things are changing.  I’m more excited and so are my colleagues.  The students are picking up on that excitement too.  The labs we’ve done for decades are being updated.  However, the real joy is in designing new ones.

Since September I’ve created three new labs besides updating the other eight I do.  One for kinematics, one for gravity and one for momentum.  The momentum one is great because we were never able to do a reliable lab before.  Using the Smart Carts and Sparkvue the kids are designing safe barriers and analyzing crashes.  My favourite part of that lab is having the students figure out if movies are lying to you when they show a person getting shot, flying backwards through a window, and landing a few metres on the other side of it.  We can recreate the situation with the Smart Cart acting as the bullet and looking at the forces involved.

This screenshot represents a head-on collision between two smart carts.  They were released at different times to offset v-t graphs.

As I was working on the design of the labs and testing them out, my colleagues and administration stopped by.  They all wanted to see what I was up to.  They could see my excitement.  They were infected.  Two team members went away and started designing their own labs.  We are talking more, sharing more and the kids benefit from it.

We can ask deeper questions because the data is more reliable and relatable.  We can do so much with the carts and are figuring out more each time.  Labs in physics 12 were hard because of analysis to 2-D.  We are creating labs for them.    The goal is a least two new labs a month.  The labs are also not so cookie-cutter.  They don’t always have to be quantitative.  They are exploring more and, hopefully, learning more.

All of this is possible because of the Smart Carts, Sparkvue and the joy of lab design.

 

STAO 2018 Workshop Schedule

Thursday, November 8, 2018

Inquiry and Devices and Probes, oh my! Inquiry and data collection in the 21st Century Science Classroom – Clayton Ellis
2:00pm – 3:00pm Room: Montreal A
Take a journey through a 21st Century Science Classroom. Through the use of various PASCO sensors and integration of a variety of apps, an inquiry-based classroom becomes an engaging and authentic place to collect and share data.

Redesigning Labs For Inquiry – Melanie Ball
2:00pm – 3:00pm Room: Peel
Learn how to take old “cook-book” labs and redesign them to meet the needs of a diverse 21st century classroom. By making small, easy changes to existing labs to increase student engagement through student voice and allowing students to differentiate labs to their own level of learning. This promotes collaboration & communication in the class resulting in greater learning and retention of topics.

“Connecting” with Generation Z using sensor-based labs – John Fittler
3:30pm – 4:30pm Room: Windsor
Are you frustrated with the lack of accuracy in your science lab results? Using a variety of Pasco sensors and I-pads, we can motivate and utilize the skills of Generation Z during our lab periods. Interactive work stations will allow you to collect data with sensors used in chemistry, physics and biology. As well, we will examine how to get this program started in your classes with projects.

Friday, November 9, 2018

iPads, Datalogging and Deep Thinking in Science – Melanie Ball
12:30pm – 1:30pm Room: Paris
We will describe how we used TLLP funds to access PASCO datalogging sensors and then describe how we use them in the science, biology, chemistry and physics classroom to engage students and promote inquiry based learning. Participants will get to use the sensors and discuss best practices with our team. Classroom ready resources will also be shared.

Saturday, November 10, 2018

An inquiry approach to teaching kinematics using wireless technology and strategies for increasing time for hands-on learning – Rick DeBenedetti
11:00am – 12:00pm Room: Peel
A crowded curriculum and limited time often drives us toward teacher-directed activities. Participants will explore position, velocity and acceleration, using free software and sensor-equipped dynamics carts. In addition, strategies for increasing time for hands-on activities will be proposed and discussed as a group.

Just another day in the lab…

The bell rings.  Time to start class. 

We are doing another lab today and today we will use the new technology!  Cheers erupt from the class.

Yes, for today’s lab there will be no ticker tape.  No counting dots!  Welcome to SPARKvue!  Everybody turn on your Sparks and open the software. 

Mr. Grant?  Mine says it needs a software update.

Go ahead and do it.

It won’t let me.

Oh, right.  I go over and update.

Turn on your smart carts and connect them to SPARKvue.

Mine says it needs a firmware update.  Mine too.  And me!

Of course.  Update all using my phone as it is faster than trying to get the Sparks to do it for some reason.

Are we ready?  Allow the carts to roll down the ramp freely.  Take data of time, position and velocity.  Graph velocity vs time.  What sort of shape are we looking for?

Straight lines!

Good.  Go for it.

Mr. Grant.  We aren’t getting any data.

Is it recording?  The button changing from green to red and back again?

Yes.

Let me try…hmm…you are right.  Let me see…Oh.  You switched it to manual recording.  Set it to periodic and try again.

Still nothing.

Let me see again.  You have a frequency of 1 Hz.  The cart is going too quickly to get data.  Change your frequency.  Is everybody else getting data?

Yes.  Sure.  My button isn’t responding.

Try a lighter touch.

Now it is.

Do around 50 runs.  Figure out which run is your best one and why.

Does the whole graph need to be straight?

What do you think?

No…?

Right.

Once you have your best run copy down the table and then graph it.  Your graph on paper should resemble the one on the Spark.

Do we need to copy down all the data?

How much do you have?

150 points.

<sigh>  What do you think?

No…?

Why not?

That is more than need to show the pattern?

Good.

Time to put the equipment away.  Please make sure it is turned off.  What did we think about the new way of doing the lab?

Updates were frustrating.

Granted.

Took us a while to get used to it.

Fair enough.

Still way better than ticker tape though.

Good.

SPARKvue 4.0

SPARKvue Software

SPARKvue_banner_main.jpg

SPARKvue 4.0 is here to make data collection and analysis even easier, whether you use Chromebooks, Computers, iPads & iPhones, Android devices, or our standalone dataloggers, the SPARK LX and SPARK LXi.

What’s New

Watch this video for a quick run-through of all the new features.

Improvements included in version 4.0

  • A new menu for frequently used features
  • A revamped Welcome Screen (see below)
  • Share experiment files directly to cloud services such as Google Drive or OneDrive.
  • Show only the most recent run data by default.
  • Calibrate and configure sensors through the new hardware setup features.
  • A new Live Data Bar has been created for experiments.

The new Welcome Screen gets you up and running even faster.

About the new Welcome Screen

Choose the type of experiment you want to perform:

  • Manual Entry
  • Sensor Data
  • Remote Logging

When using Sensor Data, SPARKvue will also guide you to a configuration panel, help you select measurements for display, and let you choose from a range of templates.

You can also build your own experiments, open a saved experiment, or open any of the many PASCO built activities.

Constant Improvement

Your one-time purchase of a license or download of the app includes free updates. SPARKvue software is constantly being refined with additional features, streamlined processes, and support for our innovative new products. Much of that improvement comes directly from feedback provided by educators.

Free SPARKlabs

Downloads

Download or update to the latest version: SPARKvue 4.0, released 10/5/2018.

Overview

Award-winning, cross-platform data collection and analysis software

Data collection and analysis is an integral part of any science investigation. Whether graphing manually-entered data, collecting real-time data from a sensor, or remotely logging data, SPARKvue software helps you and your students address important science and engineering practices in your labs.

Easy-to-use and yet powerful, SPARKvue’s collaborative features make this application ideal for use in and out of the science classroom or lab.

Features

Data Collection & Display

  • Live Data Bar
  • Periodic sampling
  • Manual sampling
  • Graph
  • Digits
  • Meter
  • Tables
  • Multiple plot areas
  • Graph or plot user entered data
  • Weather Dashboard (when used with the Wireless Weather Sensor with GPS)

Analysis Tools

  • Scale-to-fit
  • Select a region
  • Prediction tool
  • Smart tool (coordinates and deltas)
  • Statistics
  • Zoom
  • Slope tool
  • Curve fit
  • Annotation
  • Add a y-axis or a new plot area

Designed for Science Learning

  • Convenient annotation, snapshot and electronic journaling are among the features supporting peer dialogue, classroom presentations, and assessment.
  • Create and export electronic student lab journals.
  • Integrated with cloud-based file-sharing services such as Google Drive, Dropbox and more.

The same user experience across:

  • Computers
  • Chromebooks
  • Tablets
  • Smartphones
  • Our standalone SPARK LX dataloggers

Compatible Devices

Compatibility at a glance

Click on your device or devices to see SPARKvue compatibility.

System Requirements

Windows Mac
Windows 7 SP1 or later Mac OS X v 10.10 or later
1 GHz Processor An Intel Core 2 Duo, Corei3, Core i5, Core i7 or Xeon Processor
2 GB RAM 2 GB RAM
435 MB Free Disk Space (255 MB for SPARKvue, 74 MB for Common Files, and 105 MB for Experiments) 200 MB Free Disk Space (Application Bundle)
1024 X 768 or greater resolution 1024 X 768 or greater resolution
Chromebook iOS Android
Chromebook running ChromeOS 57 or later, USB and Bluetooth Requires iOS 9 or later, compatible with iPhone, iPad, and iPod touch. Android 4.4 or later.

Screenshots

The new Welcome Screen.

Graph data from a sensor and see the results in real time.

A Bar Graph used to investigate absorbance

Boyle’s Law using both manually entered data and sensor data

The new Weather dashboard to monitor atmospheric conditions.

 

The View From a Small Town Physics Classroom

Let me paint you a picture. Not something physicists normally do but I’ll give it a shot.

I teach in a small town in BC. For most of my career it has been lower on the social-economic scale, a true blue-collar place but things are changing. More and more people are being pushed out of the big cities due to high house prices and ending up here where life is more laid back, more affordable, more idyllic?

Again, for most of my career the supplies I have had access to are the same supplies that came with the school when it was built…back in the 1950s. Trying to modernize my lab has been a challenge but just like the city, things are changing.

I’ve used PASCO products since my university days and have always found them to be intuitive and practical. When I had the chance, I purchased some of their GLX data loggers for demo purposes. I started to show the students the power of probeware and they yearned for more. Yes, I used yearn to describe students. I know, almost unheard of.

When I procured the funding to buy a class set of the GLXs after buying one a year for 5 years I was ecstatic. I called PASCO to order and was told that they were discontinued. I was bummed. What now? They told me about their new product, the Spark LX as a tablet data logger. I was intrigued. Many discussions happened, and I started to get on board. PASCO even took some of my suggestions about what I thought the logger should entail. After months of waiting they finally arrived; just in time for the start of a new school year.

I happily got to setting them all up and preparing their first interactions with the devices. I would use the Match-Graph software to give my physics students some hands-on real life to graph interactions. After a few hiccups of the airlinks needing firmware updates which my school computer wouldn’t allow I had the students head out into the school to test out the Spark and the software.

The looks we got from the other students and staff started as bewilderment. “What is his class up to now?” was heard more than once. My students didn’t even hear. They were too engaged to notice. The beginner graphs which were too hard mere seconds ago were now too easy. Harder graphs please. Harder and harder they went and the more competitive they got. “I’m addicted to this!” one student exclaimed. “I get it now.” Yelled another. They were hooked at first use.

I can’t wait to see how the next experiment goes. This is how technology should work in class. Relating physical experience to life experience to learning.

____
Glenn Grant has been teaching physics, math and science for 20 years in a small town called Mission, BC. 
“For most of my career I’ve been using equipment from the 1960s. I was the first person in my district to start using a Smart Board and then started getting into sensors about 10 years ago.  Since then I’ve cobbled together whatever I can to give my students access to something from the current century.  I believe that technology has a place in the classroom as a tool to further the learning.  Using the new PASCO equipment we can do labs 100 times a class and the discussion becomes more in-depth.  Why did they choose the data set they are using?  What makes that data “better”?  Can you replicate the graph on the board using the equipment.  It allows for more actual science than just content memorization. As I deepen my understanding of the equipment and its uses, I’ve been teaching the other members of my department and other teachers in the district.  I’m not an expert yet but I’m working on it.”

ONE SENSOR, MANY POSSIBILITIES

Earlier this year PASCO released a new Wireless Weather Sensor. It collects temperature, humidity, UV, wind, and more. The sensor also has a GPS! The folks at PASCO then embedded ArcGIS into their SPARKvue software that manages the sensors and allows for data analysis and visualization. Of course you can always export your data and load into a map at ArcGIS.com.
The all-in-one instrument can record up to 17 different measurements individually or simultaneously! Use the sensor in logging mode with the optional Weather Vane Accessory for long-term monitoring, or use it as a hand-held instrument to study microclimates and record ambient conditions relevant to many biological and environmental phenomena.
The Wireless Weather Sensor covers a wide range of protocols including:
  • Air Temperature
  • Barometirc Pressure
  • Water Vapor
  • Relative Humidity
  • Surface Ozone
  • Aerosols
  • Biometry
  • Lilac Phenology
  • Seaweed Reproductive Phenology
  • Hummingbird Project
  • Phenological Gardens
  • Land Cover Sample Site
  • Fire Fuel
  • Mosquito Larvae Protocol
  • GPS

The Effect of Learning Through Inquiry: A Blog Series

Who am I?

Hello World! My name is Maayan, and I am another co-op student at AYVA. I’m currently studying biochemistry at the University of Guelph, which is how I ended up on the AYVA Team. A bit more about me: I do not have any cute pets, but I do have two younger brothers. I’m interested in science, especially all the cool discoveries that can be made to improve the human condition. Outer space is rad. I can talk about Mars colonies for hours on end.

How did I get into science?

As a wonderfully sweet little child, I frequently stole my brothers’ toys. I built Lego castles, controlled toy cars, and appropriated (stole) puzzles by the box. I liked building things, and I liked breaking things down to see how they worked. As I continued to grow into an adolescent, I enjoyed reading science fiction, enough to finish all the books my school library had.

Eventually, as I skipped on through life, I was assigned to do a school project on an important Canadian. I chose Julie Payette, an astronaut (and currently the Governor-General), and my interest was born. It was amazing to me that people had gone to the moon, and now different countries were collaborating on the International Space Station for scientific research. For the first time, I felt that people could come together for a cause to further humanity. The five-dollar bill is still my favorite: it has the Canadarm2 and the astronaut on it. To this day, I smile whenever I see one.

In high school I realized that astronauts couldn’t have gotten to space without a team of people down on earth who helped solve problems, and just because their jobs were less flashy (and got less camera time) it did not mean that they were any less important. Anyway, I liked biology (humans!) and enjoyed learning chemistry (and about the universe). I couldn’t decide which one I liked better, so biochemistry is the major I chose. No one seemed to be offering xenobiology or astrobiology courses at the time, but I hope someday they will.

What’s Next?

Back to the blog, I will be writing a few articles on teaching science through inquiry. This is important for future STEM-ists since teaching STEM is only a step before understanding STEM. After all, every inventor, scientist, engineer, mathematician, technologist, and astronaut started as a student.

Nice to meet you, and I hope to write again soon,

Maayan

GLOBE Learning Experience 2018

Originally posted on PASCO’s blog.

Every 4yrs GLOBE hosts their annual conference outside the USA and this year we trekked to Killarney, Ireland to work with GLOBE coordinators, teachers, and students from all over the world. The conference began with an opening ceremony at the Killarney House which offered an incredibly scenic exhibit venue.

GLOBE 2018 setup

For the next several day’s attendees used PASCO equipment at two field sites to collect water quality data on the Owengarrif River. Sampling took place at the Upper Torc above the falls and the Lower Torc at the mouth of the river.

GLOBE 2018 data

Having downloaded SPARKvue software to their phone or tablet the students and teachers connected to the Optical Dissolved Oxygen, Wireless pH, and Wireless Conductivity sensors to complete the Water Quality Protocol. We also deployed the new Wireless Weather Sensor which made the site set up a cinch, answering the two critical questions of “Where are we?” and “What are the current conditions?” right on the weather dashboard display.

While the map display is not required for this protocol being able to view the data in real-time on the map was helpful to give students a sense of the landscape and identify features which could impact the water quality. Happily, at every site, we sampled the Owengarrif was in good health, although it was running near record low flow rates due to a 5wk drought and above average temperatures.

Here’s a quick video of highlights during the conference – hopefully, we’ll see you there next year!

If you’re already a GLOBE teacher or PASCO user and want to see what protocols are supported with sensors, please visit our GLOBE page for an updated alignment. If you’d like to learn more about how to participate in the GLOBE program and get your students collecting data that will be used by scientists all over the world, please visit GLOBE.gov to get started.

 

Related Products:

  • 1
  • 2
  • 8

Sign Up For Our Newsletter - Get Info About New Products & Teaching Ideas

Sign Up For Our Newsletter

  • A big thanks for all the help and support you provided – I want to take some time to say a big thanks for all the help and support you provided me to select the best equipment in order to make the best possible use of the funds available. It is really exceptional that you happily connected with me multiple times even during the weekend and was always motivated to help. Please accept my big thanks for this.

    Gurpreet Sidhu | Physics Instructor | University College of North | The Pas, MB

  • Wireless Spectrometer Big Hit With Students – PASCO’s wireless spectrometer has been utilized very well by our earth science and physical science teachers. It’s an excellent piece of equipment and we have very much enjoyed its addition to enriching our classroom. It definitely brings students to a higher level of understanding wave interaction at a molecular level.

    Matt Tumbach | Secondary Instructional Technology Leader | Tommy Douglas Collegiate | Saskatoon, SK

  • Excellent Smart Cart – I thought the cart was excellent. The quick sampling rate for force will be very useful for momentum and collision labs we do. I’m recommending we include this in our order for next school year.

    Reed Jeffrey | Science Department Head | Upper Canada College | Toronto ON

  • Your lab equipment is of the highest quality and technical support is always there to help. During the 25 years we have used a wide array of lab equipment including computer interfacing. Your Pasco line has a high profile in our lab and will continue to do so far into the future.

    Bob Chin | Lab Technician | Kwantlen Polytechnic University | Surrey, BC

  • Datalogging Activities are Cross-Curricular

    Throughout the province of Nova Scotia, PASCO’s probeware technology has been merged with the rollout of the new P-6 curriculum. We chose a number of sensors for use with our project-based activities. Both the functionality and mobility of PASCO’s dataloggers enable students to collect authentic, real-world data, test their hypotheses and build knowledge.

    What we find important to a successful implementation and adoption by teachers is showing that the probes are not a ‘standalone technology’. The datalogging activities are very cross-curricular and can incorporate math, english, science, and geography outcomes.

    We are excited to learn more about PASCO’s new weather sensor because our students enjoy projects where they can share and compare their data with weather stations from around the world and be part of a global community.

    Mark Richards | Technology Integration Consultant | Annapolis Valley R.S.B. | Nova Scotia

Canada's leading source for science and engineering teaching equipment

Contact Us

7-233 Speers Road
Oakville, ON Canada L6K 0J5
Toll Free: 1-877-967-2726
Phone: 905-337-5938
Fax: 1-877-807-2726
Technical Support: 1-877-967-2726  ext. 713
PASCO Support: 1-800-772-8700 ext. 1004
Order Form : Download .xls | Download .pdf