Skip to main content
English Français

1-877-967-2726

Using the PASCO Smart Cart to Teach the Right-Hand Rule

We high school physics teachers tend to associate the right-hand rules with electromagnetism. As a student, my first encounter with a right-hand rule was when I was introduced to the magnetic field produced by the electric current in a long, straight wire: if you point the thumb of your right hand in the direction of the conventional current and imagine grasping the wire with your hand, your fingers wrap around the wire in a way that is analogous to the magnetic field that circulates around the wire.

I only later discovered that this same rule can be applied to rotational quantities such as angular velocity and angular momentum. The topic of rotation has become more important in AP physics when the program was updated from the older Physics B program. Strictly speaking, AP Physics 1 does not include the use of the right hand rule for rotation, but I have found that introducing it actually helps solidify student understanding of angular vectors.

Describing the direction of rotation as being clockwise or counterclockwise is helpful only if all parties involved have a common point of view, which is ideally along the axis of rotation. As with left and right, clockwise and counterclockwise depend on your point of view. This is why it is often preferable to describe translational motion in terms of north, south, east, west, up, and down, or with respect to a defined x-y-z coordinate system; directions can be communicated unambiguously, provided that everybody uses the same coordinate system.

It is precisely for this reason that the right hand rule can (and should) be used for rotational motion. Consider the hands of an analog clock. Assuming that the clock is a typical one, it will have hands that turn “clockwise” when viewed from the “usual” point of view, but if the clock had a transparent back and you were to view it from the back you would see the hands turning “counterclockwise!” The observed direction of rotation (clockwise or counterclockwise) depends on the observer’s point of view.

Instead of using clockwise and counterclockwise, we can describe the direction of rotation with a right hand rule: if you curl the fingers of your right hand around with the direction of the rotational motion, your thumb will point in the direction of rotation, which will be along the axis of rotation. Applying this to the above we find that when viewing a clock from the front, the rotation of the hands is three dimensionally into the clock (away from the observer), and when viewing a clock from the back side, the rotation of the hands is three dimensionally out of the clock (toward the observer). If two people view a transparent clock at the same time but one observes it from the front while the other observes it from the back (i.e. the clock is between the two people who are facing each other), they will disagree on which way the hands turn (clockwise or counterclockwise) but will agree on this direction if both use the right hand rule convention to describe the direction of the rotational motion – both observers will agree that it is directed toward the person viewing the back side of the clock.

When first learning about the right hand rule, students are often initially confused, with many students failing to grasp why such a rule is even useful in the first place. Before introducing the right hand rule I like to begin by holding an object such as a meter stick while standing at the front of the classroom. I then rotate the meter stick through its center so that the students claim that it is rotating “clockwise” when asked. Being careful to keep the rotational motion as constant as possible, I then walk to the back of the room. It’s important that the students see that at no point did I stop the rotation of the meter stick – it is still turning the same way as before, and yet at some point each student finds that they must turn around in order to continue to see it. Many students are astonished to see that the meter stick is now rotating counter clockwise from their (now reversed) point of view. This helps establish the need for a better way to describe rotation.

I then introduce the right hand rule and go through a couple of examples. Traditionally, this would have been the end of it, but last year I was able to take advantage of my newly acquired PASCO Smart Cart, which has a wireless 3-axis gyroscope (i.e. rotational sensor). The coordinate system is fixed with respect to the cart, and is printed on the cart itself, but I like to make this more visible by attaching cardboard cutout vectors onto the cart which make the axes more visible to the students while I hold the cart up for them to see. I then set up a projected display of the angular velocity of the cart along each axis simultaneously. I then ask the students how I must turn the cart in order to get a desired rotation of my choosing (i.e. ±x, ±y, and ±z).

I really like how the carts, along with the live display of the 3 angular velocity components make the admittedly abstract right hand rule so much more concrete. Seeing the display agree with our predictions makes it so much more real and is much, much better than me merely saying “trust me.” I have found that introducing and using this right hand rule with rotation has made using this same rule much more natural when using it to later relate the direction of current flow and the magnetic field.

PASCO’s Exceptional 5-year Warranty

Most companies offer a one year warranty, and a smaller number have an extended warranty for two years.  PASCO’s five year warranty is exceptional and is demonstrative of a company that has immense confidence in the products they manufacturer and also capability to live-up to its promising when an issue arises.

“Happy customers are repeat customers, and keeping our word and your trust is simply good for business.”

                                                                                                            PASCO Teacher Support Team

 

What’s the catch?  Will PASCO really repair or replace a defective product for 5 years?  The answer is yes!  As long as the product was not tampered with or damaged due to misuse, PASCO will repair or replace the unit in a timely and efficient manner

A hassle-free process – PASCO does not want you to waste your valuable time and energy by needlessly jumping through hoops.  To process a warranty claim, a simple short conversation is often all that is required.  If a repair is required, return labels and shipping instructions will be quickly emailed.

Why PASCO can afford such a long warranty

Products are designed for student use – Student labs can be tough – really tough – on equipment.  PASCO has 55 years of experience producing long-lasting high quality instructional equipment and educational technology.  Thoroughly testing products before shipping to customers is also a critical step in the process.

Always be prepared – is the famous Scout moto that is central to PASCO’s commitment to honoring its warranty promise.  For at least 5 years after purchase PASCO will maintain a dedicated inventory of replacement units – even for products that have been discontinued.  In addition, PASCO has an extensive inventory of replacement parts and occasionally surprises customers (in a very pleasant way) by helping revive an old but still valuable piece of equipment that was purchased decades ago.

Independent (Remote) Datalogging

In logging mode, wireless sensors collect data to their onboard memory for hours, days, weeks or even months at a time without needing to be connected to a computer, tablet, Chromebook or smartphone.

When the experiment concludes, simply connect the sensor to a device running PASCO software and download all the measurements it recorded.

How much does a windshield screen affect the temperature inside a car on a hot day? Using Wireless Temperature Sensors in logging mode makes it easy to find out.

 

Set up remote logging

Collect data directly on a Wireless Sensor instead of a computer or mobile device.

Note: Remote Logging is only available for PASCO Wireless Sensors.

  1. Open SPARKvue or click then select Start New Experiment.
  2. Click Remote Logging:
  3. Turn on the sensor then click the sensor which matches the device ID.

  4. Configure remote logging for each sensor:
      1. Select a sensor to configure from the Sensor menu.
      2. Toggle Sensor Enabled to Off if you don’t want to log data with this sensor.
      3. Set the Sample Rate using the left and right arrows. Toggle Common Sample Rate to Off to set different sample rates for each sensor.

    Tip: The configuration window indicates the amount of time that the sensor can log data below the sample rate. To increase the logging time:

      • Decrease the sample rate.
      • Disable unused sensors.
  5. Optional: Toggle Sensor Button Deferred Logging to On to start data logging by pressing the power button on the sensor.
  6. Click OK.

Data logging begins immediately after you click OK or press the power button on the sensor (if you selected Sensor Button Deferred Logging). The Bluetooth status light blinks yellow and green until data logging begins. When the sensor starts logging data, the Bluetooth status light blinks yellow.

Click OK and close SPARKvue. To stop data logging, turn off the sensor or connect it to SPARKvue to download the data.

Download remotely logged data

Download data remotely logged on a Wireless Sensor for data analysis. You can download the data to multiple devices as long as data isn’t deleted from the sensor after downloading it.

  1. Open SPARKvue or click then select Start New Experiment.
  2. Click Remote Logging .
  3. Turn on the sensor or press the power button if the sensor is currently logging.
    Note: The sensor doesn’t appear in Wireless Devices when the Bluetooth status light blinks yellow. Press the power button to make the sensor appear.
    Tip: Connect the sensor using USB, if available, to download data at a faster rate.
  4. Select the sensor under Sensors with data.
  5. In the Logged Data window, select Download Data.
  6. Select a method to download the data:
    • Templates
      Use this method to download the data into a new file.

      1. In the Select Measurements for Templates panel, select up to three measurements to display.
      2. In the Templates panel, select a template or a Quick Start Experiment to display the selected measurements.
    • Quick Start Experiments
      Use this method to download the data to a new Quick Start Experiment file. Names of Quick Start Experiments appear if available for the connected sensor.

      Select a Quick Start Experiment from the list, if available.

    • Add to existing experiment
      Use this method to download the data to an existing experiment file.

      1. Click Open PASCO Experiment or Open Saved Experiment.
      2. Select a file to open.

 

Free Spectrometry Software

The Spectrometry application provides support for experiments including, analysis of emission spectra, absorbance spectra of colored solutions and plant pigments, Beer’s law determination of unknown concentrations, and kinetics experiments. The learner-centered interface makes it easy for all levels of students and teachers to integrate spectrometry into the teaching and learning of physics, chemistry, and biology.

Designed for use with our Wireless Spectrometer

The Wireless Spectrometer measures emission spectra, intensity, absorbance, transmittance, and fluorescence. It easily connects to students’ devices and utilizes free PASCO Spectrometry software to display data and generate standard curves. Data is collected in less than a second, making it ideal for undergraduate labs constrained by time and technological resources.

  • Connectivity: USB or Bluetooth®
  • Fiber optic cable for emission spectra
  • Resolution: 2-3 nm FWHM
  • Range: 380-950 nm
  • 2 Fluorescence Excitation Wavelengths: 405 nm and 500 nm
  • Light Source: LED-boosted tungsten
Wireless Spectrometer

Spectrometry Crystal Violet Screen

Windows® Computers

  • Filename: Spectrometry_Win-2.2.1.2.exe
  • Filesize: 101.66 MB
  • Version: 2.2.1
  • Released: Jan 17th, 2019

Download for Free

 Mac® Computers

  • Filename: Spectrometry_Mac-2.2.1.2.dmg
  • Filesize: 22.72 MB
  • Version: 2.2.1
  • Released: Jan 17th, 2019

Download for Free

Free Apps for iPads, Android tablets, and Chromebooks.

The free apps may be downloaded directly from the App Store or Google Play respectively and update notifications will be sent directly to your device.


System Requirements

Windows
  • Windows 7 sp1 or later
  • Processor: 2 GHz or greater
  • RAM: 2GB or greater
  • Disk Space: 50 MB or greater
  • Resolution: 1024 x 768 or greater
Mac OS
  • Mac OS X v10.11 or later
  • Processor: 2 GHz or greater
  • RAM: 2GB or greater
  • Disk Space: 50 MB or greater
  • Resolution: 1024 x 768 or greater
Chromebook
  • Chrome OS v70 or later
iOS
  • iOS v9.0 or later. Compatible with iPad.
Android
  • Android v5.0 or later. Compatible with tablets only.

Resources

Spectrometry Software User Guide

Spectrometry for Chromebooks

With Google’s introduction of Android apps running on Chromebooks, the PASCO Spectrometry application can now be downloaded from Google Play store and used with a growing list of compatible Chromebooks. See the following links for compatibility and installation tips.

Chrome OS Systems Supporting Android Apps »

Models labeled on this list as “Stable” currently support PASCO Spectrometry software.

Installing on Local or Unmanaged Devices »

Follow the instructions to install Google Play on your Chromebook and then download the PASCO Spectrometry app.

Installing on Managed Devices »

Follow the instructions to install Google Play on your managed Chromebooks and then download the PASCO Spectrometry app.

The PASCO Bluetooth Spectrometer: Even Isaac Newton would flip over the power of this digital prism!

Reposted from the NSTA Blog, original article can be found here.

The PASCO Wireless Spectrometer

Simply put, constructivism is a theory of knowledge that argues that humans generate knowledge and meaning from an interaction between their experiences and their ideas. So it follows that nothing is can be more constructivist than exploring the theoretical with real-time tools that measure the invisible. And the PASCO Wireless Spectrometer is just such a tool.

One of the most amazing things about the PASCO Wireless Spectrometer is that it does exactly what you would want it to do; show you the invisible with ease, simplicity, and leave behind a useful digital paper trail of graphs and charts. Although the main purpose of the PASCO Wireless Spectrometer was “specifically designed for introductory spectroscopy experiments” it actually goes farther than that. Much farther. Much much farther!

This trio of teachers, two from China and one from Mongolia have limited English speaking skills, but instantly understood the iPad app and PASCO Wireless Spectrometer. Seems that light is also a universal language.

The physics and electronics behind the PASCO Wireless Spectrometer are straight forward. The output is clear and obvious. And the mobility aspect is unprecedented. In other words, it does what it should how it should. Amazing enough on its own, but in true paradigm shifting fashion the PASCO Wireless Spectrometer presents the invisible world of visible light in the magical cartoon chart we’ve seen only in static textbooks for most of our lives. It’s as if the dinosaur skeletons in dusty museums suddenly came alive and reacted to the world.

Visible light, or the light our human eyes sense and convert to electrical impulses to our brains, only encompass a tiny fraction of the electromagnetic spectrum. Wavelengths between 390-700 nanometers, or from the short blue/violet waves to the longer orange/red ones with green and yellow in the middle. Infrared waves are just a little too long for us to see, and ultraviolet ones are a little too short. Even longer are radio waves, and even shorter are x-rays. The PASCO Wireless Spectrometer has a range of 380 to 950 nanometers meaning it can “see” a little into the ultraviolet and a lot into the infrared.

An ultraviolet light spikes the graph just outside the shortest wavelength we can see with our eyes.

Where this all comes together is that when the PASCO Wireless Spectrometer and various light sources are manipulated with our hands, the extended visible spectrum becomes something we can explore with the same cognitive dexterity as the microscope affords us in biology. When used in the classroom for demonstrations and explorations, the PASCO Wireless Spectrometer literally lets “humans generate knowledge and meaning from an interaction between their experiences and their ideas.” So yes, the PASCO Wireless Spectrometer is the epitome of constructivist theory into educational practice.

Isaac Newton

Although Isaac Newton is credited with discovering the inner workings of visible light back in the latter 1600s, the basic concept behind a rainbow was suggested by Roger Bacon 400 years earlier who in turn drew upon the works of Claudius Ptolemy a millennium before, and even Aristotle another 300 years before that.

Roger Bacon

Claudius Ptolemy

Aristotle

As a quick digression here, the Newtonian physics behind the PASCO Wireless Spectrometer has roots much more than five times deeper into the past than Mr. Newton’s distance in time is from us right now. Sorry to go all Einstein on you, but the individual colors of visible light that Newton coaxed out of sunlight with only a glass triangle, and then reassembled with nothing more than a companion prism was like yesterday.  Yet the attempts to explain the phenomena were first floated last week.

And now to think that within the palm of a student’s hand and the screen of their iPad is a gift of knowledge as great as the discovery itself. A stretch? Perhaps, but unless a scientific concept can be truly understood to the point one can make personal meaning out of the discovery, memorized facts are little more than coins used to buy grades.
Technically speaking, the PASCO Wireless Spectrometer is a battery operated spectrometer that uses Bluetooth wireless or a USB wire in order to communicate with a computing device running the necessary software. With its own built-in LED-boosted tungsten light source and three nanometer resolution, the PASCO Wireless Spectrometer provides an exceptional tool for traditional experimentation with pl
enty of room left over to inspect rarely explored specimens of light scattered throughout our lives.
The operation of PASCO’s unassuming black brick puts the power of spectrometry into the hands of grade school students and Ph.D. candidates alike. While maybe not the most durable block in the scientific toy box, the PASCO Wireless Spectrometer does offer a level of simplicity (when desired) as easy to use as  glass prism and sunlight. Of course you can do much more with the PASCO Wireless Spectrometer, but you don’t have to in order to get your money’s worth. This spectrometer does so much so well so easily that it literally rewrites lesson plans just by walking into the classroom.
On a higher level, the PASCO Wireless Spectrometer can be used in chemical experiments of intensity, absorbance, transmittance and fluorescence all while using a device that, according to PASCO, has light pass through the solution and a diffraction grating and then a CCD array detects the light for collection and analysis. Sounds simple enough just like a digital prism should. Except this one gives about nine hours of service per battery charge.
In the off chance that the battery fails, it is user-replaceable. in the off chance the light burns out, it is user-replaceable. And in the likely chance that liquid from a cuvette spills into the holder, a drain hole limits the damage, and cleaning the holder is user-serviceable with a cotton swab and deionized water.

A portable studio light is used to provide a background of predictable photons in order to explore the absorbance properties of various types of matter including sunglasses, polarizers, fabric, and theater lighting filters.

The PASCO Wireless Spectrometer must interface with a computer or tablet. Both Mac and Windows are supported as is iOS and Android.
You can download the Spectrometer user guide here.
PASCO also suggests using the Wireless Spectrometer for the following popular labs:
  • Absorbance and transmittance spectra
  • Beer’s Law: concentration and absorbance
  • Kinetics
  • Fluorescence
  • Photosynthesis with DPIP
  • Absorption spectra of plant pigments
  • Concentration of proteins in solution
  • Rate of enzyme-catalyzed reactions
  • Growth of cell cultures
  • Light intensity across the visible spectrum
  • Emission spectra of light sources
  • Match known spectra with references
And PASCO also provides several sample labs for plug-and-play directly into the chemistry classroom. But the really exciting plug-and-play option is the accessory fiber optic probe. With no more effort than sliding a faux cuvette into the receiving slot on the spectrometer, a meter-long fiber cord moves a directional sensor out into the wild where it can capture photons from all kinds critters. Some of my favorite animals include UV lights, filtered lightbulbs, various school lighting sources, sunlight though sunglasses, polarizers, and pretty much any LED flashlight I can find, especially the really good ones.
Although the screen output from the PASCO Wireless Spectrometer’s software is a graphical representation of a physical property, it takes almost no mental gymnastics to understand the changes to the graph once your mind is oriented to the display. The color-coded background and gesture-ready scaling provides an exceptionally smooth relationship with the data to the point all the hardware and software disappear leaving only the experiment and the results. And in my book, that kind of invisibility is the true measure of success with a teaching product.
When teaching the next generation about the important discoveries of the past generations, we have an obligation to use the most powerful educational tools possible. The PASCO Wireless Spectrometer is truly 100% pure constructivism-in-a-box. It turns experiences and ideas into personal meaning. Battery included and no wires necessary.
This entry was posted in NSTA Recommends: Technology, Science 2.0 and tagged Spectrometer, wireless.

PASCO Capstone 2 Software

CAPSTONE 2.0 is out now! Free Upgrade for Capstone 1.x users!

Updated with new tools! Designed specifically to collect, display and analyze data in physics and engineering labs.

Features for Capstone 2.0!

Blockly Coding

Helps Students Develop Computational Thinking Skills

Physics educators want more experimental control and programming access to all PASCO interfaces and sensors. Students need tools to develop creative programing and problem solving skills in science. Blockly coding has been built into Capstone 2, giving teachers and students the tools they need to develop these skills.

With PASCO Capstone In Your Lab:

  • Apply coding concepts to your labs
  • Create new sampling conditions
  • Design Sense and Control experiments
  • Create whatever experiment you or your students can dream up!
Capstone Blockly Graph

Trials Table – Coming in 2020!

Capstone Trials TableYou never take only one run in science. You take multiple runs and calculate averages. Next, you vary a parameter while holding the other constant; again, taking more runs and calculating averages. Most software data tables don’t actually allow this to be done easily.

The Capstone Trials Table was created for how data is collected in the science lab and allows for the kind of analysis students need to perform.

  • Organize your data to easily define physical relationships
  • Track variables
  • Average runs
  • Plot derived values

Capstone Mass of PendulumUsing the simple pendulum lab as an example, students will time a simple pendulum under various conditions. They will vary the mass, length, and starting angle. The Capstone Trials Table allows you to vary and keep track of experimental parameters between trials and runs taken in each trial. You can also keep track of statistics for averaged runs and experimental error.

Real-world Science

Scientists always take multiple runs and calculate averages. Next, they vary a parameter while holding the others constant; again, taking more runs and calculating averages. Most software data tables don’t support this and require data export and processing… until Capstone 2.

The Capstone Trials Table was created to reflect how data is collected in science labs. It supports the analysis students need to develop critical thinking skills and interpret the data.

With Capstone students can:

  • Organize data to easily define variable relationships
  • Track multiple variables
  • Average runs within a trial group
  • Plot derived values (such as an average of runs vs. a group parameter)

For example, in the Simple Pendulum lab, students time a pendulum under different conditions by varying the mass, length, and starting angle. The Capstone Trials Table allows you to manipulate variables and track experimental data between trials and runs. You can also keep track of statistics for averaged runs and experimental error.


Graph Pop-Up Tools

Now, whenever tools are activated, the most common actions will be easily accessible on the graph. The pop-up tools allow for easy access to tool features and options.

Capstone Graph Pop-up Tools


Circuits Emulation

Reinforce circuit concepts and tackle student misconceptions using circuit visualization. Combine real-world circuits with simulations, animation, and live measurements. Drag components from the components list, then rotate them and connect pieces together by drawing wires.

With the Circuits Emulation tool in Capstone 2, you can:

  • Construct and modify circuits
  • Show conventional current and electron flow animation
  • Animate circuits with live sensor data

Drag components out from the components list. Rotate components and connect pieces together by drawing wires.

Capstone Circuits Emulation Screen Example

AYVA’s Field Trip to the Ontario Science Centre

Last week, AYVA had the pleasure of demonstrating some of PASCO’s newest wireless sensors for a group of science educators at the Ontario Science Centre in Toronto, Ontario. Together we were able to come up with some fun demonstrations to get kids interested in the wonders of science.

First, we used the force platform to observe the phenomenon of your weight temporarily decreasing when your heart beats. You can look at the data and see the downward spikes occurring every second or so but how do we know that it actually corresponds to your heart rate? At the Ontario Science Centre, they have a stethoscope attached to a microphone so that we could hear the heart beat and see the weight drop simultaneously.

Next the durability of the Wireless Accelerometer was tested. The first test was standing on a desk and dropping it to observe the sensors freefall, but that wasn’t enough to satisfy these innovative educators. Their next idea was to tape the accelerometer to a baseball bat and hit the force platform covered with a layer of foam and a piece of wood.

The Wireless Temperature Link was a big hit with the science educators. For their first demonstration they placed it in a vacuum chamber along with the Wireless Pressure Sensor and graphed both pressure vs. time and temperature vs. time to look at their relationship. The Wireless Temperature Link was then placed in front of a silver dish at the focus point of a heat producing light bulb a few meters away. Even though the light bulb and the sensor had some distance between them, you could still see the temperature increasing quickly over time.

Overall, our little field trip to the Ontario Science Centre proved to be a valuable experience not only for the science educators but ourselves as well. It gave them a chance to play with some of our new technology, while coming up with new and innovative demonstrations that could be used by teachers in the classroom.

Freezing Waves in Time!

Your students will be amazed at how the PASCO strobe light instantly and dramatically freezes the motion of a vibrating string – appearing as if it’s stopped in time.
By slightly adjusting the strobe’s frequency, the string’s frozen wave will appear as if it is moving slowly forwards or backwards. This wave freezing demonstration approaches absolute zero on the ‘cool’ factor scale!

The Physics of Kawhi Leonard’s Incredible Buzzer Beater

It was the shot heard across Canada.  There were a lot of factors that made Kawhi’s buzzer beating basket so remarkable.  Aside from there being no time left on the clock and the weight of a sport’s nation on his shoulders, Kawhi had to overcome the backward momentum that is inherent in a ‘fadeaway’.  The purpose of a fadeway is to create space between the shooter and defender(s), which was a necessity for Kawhi as there were several seriously tall 76ers trying to screen his shot.

Over-coming the fadeway’s backwards momentum is no easy feat as it requires players to quickly calibrate in their minds the additional force that is required to successfully sink a basket, which for most mere mortals is not intuitive.  The shot is so challenging that only a handful of NBA basketball players have been able to reliably make this shot; and we’re talking the great players such as Michael Jordan, Lebron James, Kobe Bryant and of course Kawhi Leonard.

The video below provides an extreme example of backwards momentum with a soccer ball shot from the back of a truck

Investigating Kawhi Leonard’s shot in the lab

In addition to backwards momentum there were many additional physical factors at play such as the angle of the shot and gravity.  Investigating all these forces in a single activity would not be practical.  Fortunately most of these forces can be isolated and explored in the lab using PASCO sensors, software and/or equipment.

Exploring The fadeaway’s negative momentum using PASCO

PASCO offers an intriguing and affordable solution to model the dramatic effect of a fadeaway’s negative momentum on projectile distance.  PASCO’s mini launcher will consistently launch projectile balls the same horizontal distance for a set angle, assuming that the launcher is stationary.  If however, the launcher is placed on PASCO’s frictionless cart, the force of pulling the trigger will cause the cart to move backwards at a velocity that can be measured using the motion sensor.  Students will be surprised to see that even though the cart travels just a few centimeters, the overall projectile distance is significantly reduced.  This can be a very simple demonstration or an in-depth quantitative analysis that factors in the projectiles initial angle and velocity, the time of flight and even the k-constant of the spring.

Other Forces Affecting a Basketball Shot

Momentum and Explosions

When a basketball player takes a jump shot (as with a fadeway), the player and the ball could be viewed as 2-object linear system if you ignore other outside forces such as gravity.  What’s interesting, and perhaps not apparent to many students, is that the basketball will exert an equivalent force to the player as the player is exerting on the basketball (Newton’s 3rd Law).  Of course because of the very significant inertia (mass) difference between the two objects, the basketball will accelerate at a much fast rate than the player.  The player however will experience some acceleration in the opposite direction to that of the basketball.

Using Smart Carts to explore Momentum and Explosions (Free Lab)

The Wireless Smart Carts are equipped with an exploding plunger.  Multiple 250g bars can be added to one cart to skew the masses.  The velocities of both carts are measured using the cart’s internal position sensors enabling students to determine that momentum is conserved in a linear exploding system.

ME-1240 Smart Cart (Red)

ME-1241 Smart Cart (Blue)

ME-6757A Cart Mass (set of 2)

Newton’s Third Law

The player’s force on the basketball will be equal to the opposing force of the basketball onto the player.  Of course most students will consider this a ridiculous proposition until they prove this for themselves.

Using Smart Carts to explore Newton’s Third Law

There are several ways the carts can be used.  The simplest activity is for two students to have a tug-of-war using the internal force sensors of two Smart Carts and an elastic band as depicted in the image.  The equal but opposite forces will be confirmed, however in relation to a basketball player taking a shot, it has some shortcomings as the forces are pulling as oppose to pushing.

An equally simple activity, and one more relevant to the basketball shot scenario, is to collide two Smart Carts (with magnetic bumpers attached to their force sensors).  As both carts have equivalent masses, students may not be surprised to see the impact forces are identical.  However, what will probably surprise your students, are the force measurements that occur during a collision when one cart is weighed down with one or more 250g masses.  Using their intuition, most students will speculate that one of the carts will experience a much greater force than the other.  Of course, Newton’s 3rd Law will triumph and the forces will be identical.

 

 

Gravity

What goes up must come down.  This is true of course for all earth bound objects (including basketballs) due to the ever present force of gravity.  Without gravity the trajectory of a basketball player’s shot would be straight to the ceiling of the arena, where most of the fans would be viewing the game.

Exploring the accelerating force of gravity using the Motion sensor

PASCO offers several technologies and techniques for measuring gravity including the Wireless Smart Gate and Picket Fence and the new Freefall apparatus.  Both of these techniques are accurate and precise means to measure gravity.  A third technique and one more appropriate for relating to a basketball shot is to measure the position of a vertically tossed ball and then have the software derive an acceleration graph from this data.  Statistics, including the Mean of the acceleration plot can be calculated by the software for the period when the ball was in freefall as shown in the graph.

 

 

 

 

 

 

 

 

 

 

 

The average acceleration in the free fall period is approximately -9.5 m/s/s

 

 

Included Products:

Save & Share Cart
Your Shopping Cart will be saved and you'll be given a link. You, or anyone with the link, can use it to retrieve your Cart at any time.
Back Save & Share Cart
Your Shopping Cart will be saved with Product pictures and information, and Cart Totals. Then send it to yourself, or a friend, with a link to retrieve it at any time.
Your cart email sent successfully :)