James Lincoln Introduces us to PASCO’s new Modular Circuits Kits
James Lincoln (physicsvideos.com) introduces teaches to PASCO’s new Modular Circuits Kits at NSTA 2017.
James Lincoln (physicsvideos.com) introduces teaches to PASCO’s new Modular Circuits Kits at NSTA 2017.
Students often struggle understanding pH. While we can tell them that it is a logarithmic function, students are more likely to associate “logs” with a calculator button or a piece of wood. So how do we get them to understand what the pH scale really means? Look for a lesson, instead of a pot of gold, at the end of a rainbow.
Let’s start with the acids. First have the students pour 10 mL of 0.1 M HCl into a test tube. Using graduated cylinders and pipets they can add 1 mL of that solution to another test tube with 9 mL of water making a 0.1 M solution. They should repeat the process of taking 1 mL of the previous solution and adding 9 mL of water until there are 5 solutions. They won’t know it, but they just performed a serial dilution. Now they can add some universal indictor to the solutions for a splash of colour.
Indicators are nice, but they really are just an indicator. In this case the indictor was not able to distinguish between the first four test tubes. (Note to self: get some new universal indicator!). Since the true colors aren’t shining through, it’s important to remember that to really understand pH, your students need to take actual pH measurements.
Now comes the pHun part! After recording the data for the solutions, it is important for students to try to make some meaning out of those measurements. Time to dust off those concentration calculation skills. They should be able to calculate the concentration, and write the concentration of the acids in scientific notation.
No need to travel somewhere over the rainbow, all your students need now are some good guiding questions and they should see that pH is primarily based on the negative exponent of the concentration of H+. With this understanding, pH=-log[H+] can be something more powerful than just a formula to plug and chug in calculator.
You can even extend this activity to pOH and its relationship to pH if you drop the base. Following the same procedure, students can perform a serial dilution starting with a 0.1 M NaOH solution.
After this colourful and engaging activity with the Wireless pH sensor and some fresh universal indicator, your students will be able to find the rainbow connection: a better understanding of the pH scale, what it means and how it’s measured.
The ability to easily and affordably measure CO2 levels is great news for Biology and Environmental Science teachers.
PASCO’s new Wireless CO2 Sensor communicates directly with a wide range of Bluetooth equipped computers without requiring an expensive interface.
Ambient environmental Carbon Dioxide levels are typically very low. This means any experimental changes to CO2 levels tend to be significant in percentage terms providing convincing and reliable evidence of the phenomenon being studied.
Investigations based on the wireless CO2 sensors are easy to setup and they work.
Other opportunities for CO2 investigations include:
Students at Chatham Kent Secondary School using PASCO’s wireless temperature sensor to measure temperature changes in endothermic reactions.
It seems that many public schools are operating with science budgets that haven’t increased in over 20 years and are barely sufficient to purchase the consumable requirements for the year. However, despite this wide spread apparent lack of funds many schools are still finding the means to make a significant investment in wireless sensor technology. When possible we ask our customers how their purchase is being funded. See below for a summary of the range of responses we’ve received. Regardless of the funding source, the following points are often incorporated in the successful grant proposals.
Wireless sensors:
Click here for a presentation on the educational arguments for wireless sensors:
Popular Funding Sources
In this lab we melted wax in a test tube and measured the temperature as it cooled over 30 minutes.
The students were asked to draw a graph (cooling curves) of their results and were able to compare it with the more accurate data from the thermometer.
It was great to be able to show the students what their graphs should look like.
Tamara Manweiler
Maple Ridge Secondary School
Respiration is a process in a living organism that involves the exchange of Oxygen and Carbon Dioxide. When humans breathe oxygen is inhaled into the lungs and then absorbed into the blood stream. Carbon dioxide of course flows in the opposite direction and is exhaled. Over the course of day this continuous cycle is carried out 19,000 times. But what happens when we interrupt the cycle by holding our breath?
Our test subject in the video explores what happens to his lung’s CO2 levels when holding his breath for varying times.
Wireless CO2 Sensor PS-3208 $309 (Available Summer 2017)
Valentine’s Day is here and attractive forces are on everyone’s mind. In science, a general rule is “opposites attract.” In solution chemistry, there is another saying, “like dissolves like.”
Although “like dissolves like” sounds as if it contradicts “opposites attract,” it is actually an extension of the same physical phenomenon. For example, polar molecules will be attracted to other polar molecules through the attraction of the opposite partial charges on the atoms. Therefore, charged (or partially charged) solutes will dissolve in charged (or partially charged) solvents. So “like does dissolve like.”
Hydrogen bonding will occur between the polar -OH group on the ethanol molecule and the polar water molecule.
A quick demonstration highlighting “like dissolves like” can be performed with some canola oil, water, and a colored ionic compound such as copper(II) chloride.
Copper chloride dissolves in the water layer but not in the oil layer.
To demonstrate nonpolar solubility, you can use hexane, water, and iodine. In this case, the nonpolar iodine will dissolve in and color the nonpolar hexane, but it will not affect the polar water. London dispersion forces can be used to explain the nonpolar–nonpolar interaction.
Finally, you can create an inquiry experiment for your students by having them determine if unknown compounds are more polar or nonpolar, based on their relative solubility in water. If you are testing unknown compounds that are not colored, you can measure another property of the mixture, such as pH or conductivity, using the Wireless pH or Wireless Conductivity Sensors, to determine if the solute will dissolve in the polar solvent.
With these quick demonstrations and activities, you can use the students’ established ideas about forces of attraction to introduce the important concepts of molecular structure and “like dissolves like.”
Rick Debenedetti from Streetsville Secondary School in Mississauga demonstrates how to use a Smartphone, a Smart Cart and a Wireless Light Sensor to investigate the relationship between light intensity and the distance from a single point source of light.
PAStrack (ME-6960) $146
Wireless Light Sensor (PS-3213)
Wireless Smart Cart (ME-1241) $295
Smart Phone with Flashlight App
The Blue Line shows the connected data points of the light sensor readings plotted against the Smart Carts position sensor readings. The red line is the applied Inverse Square Fit. Notice how well the Inverse Square Fit curve matches the plotted data.
A big thanks for all the help and support you provided – I want to take some time to say a big thanks for all the help and support you provided me to select the best equipment in order to make the best possible use of the funds available. It is really exceptional that you happily connected with me multiple times even during the weekend and was always motivated to help. Please accept my big thanks for this.
Gurpreet Sidhu | Physics Instructor | University College of North | The Pas, MB
Wireless Spectrometer Big Hit With Students – PASCO’s wireless spectrometer has been utilized very well by our earth science and physical science teachers. It’s an excellent piece of equipment and we have very much enjoyed its addition to enriching our classroom. It definitely brings students to a higher level of understanding wave interaction at a molecular level.
Matt Tumbach | Secondary Instructional Technology Leader | Tommy Douglas Collegiate | Saskatoon, SK
Excellent Smart Cart – I thought the cart was excellent. The quick sampling rate for force will be very useful for momentum and collision labs we do. I’m recommending we include this in our order for next school year.
Reed Jeffrey | Science Department Head | Upper Canada College | Toronto ON
Your lab equipment is of the highest quality and technical support is always there to help. During the 25 years we have used a wide array of lab equipment including computer interfacing. Your Pasco line has a high profile in our lab and will continue to do so far into the future.
Bob Chin | Lab Technician | Kwantlen Polytechnic University | Surrey, BC
Datalogging Activities are Cross-Curricular
Throughout the province of Nova Scotia, PASCO’s probeware technology has been merged with the rollout of the new P-6 curriculum. We chose a number of sensors for use with our project-based activities. Both the functionality and mobility of PASCO’s dataloggers enable students to collect authentic, real-world data, test their hypotheses and build knowledge.
Mark Richards | Technology Integration Consultant | Annapolis Valley R.S.B. | Nova Scotia
We have a large number of PASCO wireless spectrometers and love how they have improved the learning experience for our students.
Shawn McFadden | Technical Specialist | Ryerson University | Toronto, Ontario
During distance learning due to COVID-19 school shut down, I was given a short window to collect what I could from my classroom to teach online. The PASCO wireless sensors and Smart Carts were my top priority to collect to implement distance learning. By sharing experimental data with students via SPARKVue, the sensors were pivotal in creating an online experience that still allowed students to grow with their lab skills. It was easy to record videos of the data collection and share the data with my students. They did a phenomenal job examining and interpreting the data.
Michelle Brosseau | Physics Teacher | Ursuline College Chatham | Chatham, Ontario
7-233 Speers Road
Oakville, ON Canada L6K 0J5
Toll Free: 1-877-967-2726
Phone: 905-337-8486
Technical Support: 1-877-967-2726 ext. 713
PASCO Support: 1-800-772-8700 ext. 1004
Order Form: 2022 AYVA Order Form
I have taught grade 9 applied science, science and technology, grade 10 applied, regular and enriched science, grade 11 chemistry and physics for 33 years at Westwood Senior High School in Hudson Québec. I discovered the PASCO equipment in 2019 and it completely changed my life. I love to discover, produce experiments and share discoveries. I am looking forward to work with your team.
Having graduated with a major in Computer Science and minors in Physics and Mathematics, I began my teaching career at Killarney Collegiate Institute in Killarney, Manitoba in 2009. While teaching Physics there, I decided to invest in PASCO products and approached the Killarney Foundation with a proposal about funding the Physics lab with the SPARK Science Learning System and sensors. While there I also started a tremendously successful new course that gave students the ability to explore their interests in science and consisted of students completing one project a month, two of which were to be hands-on experiments, two of which were to be research based, and the final being up to the student.
In 2011 I moved back to Brandon, Manitoba and started working at the school I had graduated from, Crocus Plains Regional Secondary School. In 2018 I finally had the opportunity to once again teach Physics and have been working hard to build the program. Being in the vocational school for the region has led to many opportunities to collaborate with our Electronics, Design Drafting, Welding, and Photography departments on highly engaging inter-disciplinary projects. I believe very strongly in showing students what Physics can look like and build lots of demonstrations and experiments for my classes to use, including a Reuben’s tube, an electromagnetic ring launcher, and Schlieren optics setup, just to name a few that have become fan favourites among the students in our building. At the end of my first year teaching Physics at Crocus Plains I applied for CERN’s International High School Teacher Programme and became the first Canadian selected through direct entry in the 21 years of the program. This incredible opportunity gave me the opportunity to learn from scientists working on the Large Hadron Collider and from CERN’s educational outreach team at the S’Cool Lab. Following this, I returned to Canada and began working with the Perimeter Institute, becoming part of their Teacher Network.
These experiences and being part of professional development workshops with the AAPT and the Canadian Light Source (CLS) this summer has given me the opportunity to speak to many Physics educators around the world to gain new insights into how my classroom evolves. As I work to build our program, I am exploring new ideas that see students take an active role in their learning, more inter-disciplinary work with departments in our school, the development of a STEM For Girls program in our building, and organizing participation in challenges from the ESA, the Students on the Beamline program from CLS, and our local science fair.
Though I graduated with a BEd qualified to teach English and Social Studies, it just wasn’t meant to be. My first job was teaching technology courses at a local high school, a far cry from the English and Social Studies job I had envisioned myself in. I was lucky enough to stay in that position for over ten years, teaching various technology courses in grades 10-12, while also obtaining a Master of Education in Technology Integration and a Master of Education in Online Instructional Media.
You will notice what is absent from my bio is any background in science. In fact, I took the minimum amount of required science courses to graduate high school. Three years ago I switched roles and currently work as a Technology Integration Leader; supporting teachers with integrating technology into their pedagogy in connection with the provincial outcomes. All of our schools have PASCO sensors at some level (mostly grades 4-12) and I made it my professional goal to not only learn how to use them, but to find ways to make them more approachable for teachers with no formal science background (like me!). Having no background or training in science has allowed me to experience a renewed love of Science, making it easier for me to support teachers in learning how to use PASCO sensors in their classrooms. I wholeheartedly believe that if more teachers could see just how easy they are to use, the more they will use them in the classroom and I’ve made it my goal to do exactly that.
I enjoy coming up with out-of-the-box ways of using the sensors, including finding curriculum connections within subjects outside of the typical science realm. I have found that hands on activities with immediate feedback, which PASCO sensors provide, help students and teachers see the benefits of technology in the classroom and will help more students foster a love of science and STEAM learning.